ترغب بنشر مسار تعليمي؟ اضغط هنا

Cyclotron-resonance-assisted photon drag effect in InSb/InAlSb quantum wells excited by terahertz radiation

146   0   0.0 ( 0 )
 نشر من قبل Sergey Ganichev
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the observation of the cyclotron-resonance-assisted photon drag effect. Resonant photocurrent is detected in InSb/InAlSb quantum wells structures subjected to a static magnetic field and excited by terahertz radiation at oblique incidence. The developed theory based on Boltzmanns kinetic equation is in a good agreement with the experimental findings. We show that the resonant photocurrent originates from the transfer of photon momentum to free electrons drastically enhanced at cyclotron resonance.



قيم البحث

اقرأ أيضاً

Measuring terahertz (THz) conductivity on an ultrafast time scale is an excellent way to observe charge-carrier dynamics in semiconductors as a function of time after photoexcitation. However, a conductivity measurement alone cannot separate the effe cts of charge-carrier recombination from effective mass changes as charges cool and experience different regions of the electronic band structure. Here we present a form of time-resolved magneto-THz spectroscopy which allows us to measure cyclotron effective mass on a picosecond time scale. We demonstrate this technique by observing electron cooling in the technologically-significant narrow-bandgap semiconductor indium antimonide (InSb). A significant reduction of electron effective mass from 0.032$m_mathrm{e}$ to 0.017$m_mathrm{e}$ is observed in the first 200ps after injecting hot electrons. Measurement of electron effective mass in InSb as a function of photo-injected electron density agrees well with conduction band non-parabolicity predictions from ab initio calculations of the quasiparticle band structure.
We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives t he carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency $omega$ and momentum relaxation time $tau_{text l}$ larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light impact ionization is proportional to $exp(-E_0^2/E^2)$, with the radiation electric field amplitude $E$ and the characteristic field parameter $E_0$. As observed in experiment, it exhibits a strong frequency dependence for $omega tau gg 1$ characterized by the characteristic field $E_0$ linearly increasing with the radiation frequency $omega$.
We report on the observation of terahertz radiation induced photoconductivity and of terahertz analog of the microwave-induced resistance oscillations (MIRO) in HgTe-based quantum well (QW) structures of different width. The MIRO-like effect has been detected in QWs of 20 nm thickness with inverted band structure and a rather low mobility of about 3 $times$ 10$^5$ cm$^2$/V s. In a number of other structures with QW widths ranging from 5 to 20 nm and lower mobility we observed an unconventional non-oscillatory photoconductivity signal which changes its sign upon magnetic field increase. This effect was observed in structures characterized by both normal and inverted band ordering, as well as in QWs with critical thickness and linear dispersion. In samples having Hall bar and Corbino geometries an increase of the magnetic field resulted in a single and double change of the sign of the photoresponse, respectively. We show that within the bolometric mechanism of the photoresponse these unusual features imply a non-monotonic behavior of the transport scattering rate, which should decrease (increase) with temperature for magnetic fields below (above) the certain value. This behavior is found to be consistent with the results of dark transport measurements of magnetoresistivity at different sample temperatures. Our experiments demonstrate that photoconductivity is a very sensitive probe of the temperature variations of the transport characteristics, even those that are hardly detectable using standard transport measurements.
We report time resolved measurements of spin relaxation in doped and undoped InSb quantum wells using degenerate and two-color magneto-optical Kerr effect techniques. We observed that the photo-excited spin dynamics are strongly influenced by laser e xcitation fluence and the doping profile of the samples. In the low fluence regime, an oscillatory pattern was observed at low temperatures ($leq$ 77 K) in the samples with an asymmetric doping profile which might be attributed to the quasi-collision-free spin relaxation regime. Our measurements also suggest the influence of the barrier materials (Al$_{x}$In$_{1-x}$Sb) on the spin relaxation in these material systems.
420 - A.V. Stier , C.T. Ellis , H. Zhang 2011
We measure the Hall conductivity of a two-dimensional electron gas formed at a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron resonance frequency by employing a highly sensitive Faraday rotation method coupled with electric al gating of the sample to change the electron density. We observe clear plateau-and step-like features in the Faraday rotation angle vs. electron density and magnetic field (Landau-level filling factor), which are the high frequency manifestation of quantum Hall plateaus - a signature of topologically protected edge states. The results are compared to a recent dynamical scaling theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا