ترغب بنشر مسار تعليمي؟ اضغط هنا

The Role of Source Coherence in Atom Interferometery

39   0   0.0 ( 0 )
 نشر من قبل Kyle Hardman
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The role of source cloud spatial coherence in a Mach-Zehnder type atom interferometer is experimentally investigated. The visibility and contrast of a Bose-Einstein condensate (BEC) and three thermal sources with varying spatial coherence are compared as a function of interferometer time. At short times, the fringe visibility of a BEC source approaches 100 % nearly independent of pi pulse efficiency, while thermal sources have fringe visibilities limited to the mirror efficiency. More importantly for precision measurement systems, the BEC source maintains interference at interferometer times significantly beyond the thermal source.

قيم البحث

اقرأ أيضاً

We experimentally investigated the rotationally resolved polarization characteristics of N$_2^+$ lasing at 391 and 428 nm using a pump-seed scheme. By varying the relative angle between the linear polarizations of the pump and seed, it is found that the polarizations of the P and R branches of 391-nm lasing are counter-rotated. By contrast, both branches of 428-nm lasing remain polarized along the pump. The origin of the puzzled abnormal polarization characteristics is found based on a complete physical model that simultaneously includes the transient photoionization and the subsequent coupling among the electronic, vibrational and rotational quantum states of ions.It suggests that the cascaded resonant Raman processes following ionization create negative coherence between the rotational states of $J$ and $J$+2 in the ionic ground state X$^2Sigma_g^+( u=0)$, which leads to mirror-symmetrical polarization for the P and R branches of 391-nm lasing. Both the experiment and theory indicate that the demonstrated rotational coherence plays an extremely pivotal role in clarifying the gain mechanism of N$_2^+$ lasing and opens up the route toward quantum optics under ultrafast strong fields.
An electrically-controllable, solid-state, reversible device for sourcing and sinking alkali vapor is presented. When placed inside an alkali vapor cell, both an increase and decrease of the rubidium vapor density by a factor of two are demonstrated through laser absorption spectroscopy on 10 to 15 s time scales. The device requires low voltage (5 V), low power (<3.4 mW peak power), and low energy (<10.7 mJ per 10 s pulse). The absence of oxygen emission during operation is shown through residual gas analysis, indicating Rb is not lost through chemical reaction but rather by ion transport through the designed channel. This device is of interest for atomic physics experiments and, in particular, for portable cold-atom systems where dynamic control of alkali vapor density can enable advances in science and technology.
86 - Vincent Menoret 2011
We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the m aturity of fiber telecom technology to reduce the number of free-space optical components which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto optical trap in microgravity during parabolic flights.
The coherence of quantum systems is crucial to quantum information processing. While it has been demonstrated that superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and therefore the quantum character of the information in these systems. An alternative is to share the tasks between different quantum platforms, e.g. cold atoms storing the quantum information processed by superconducting circuits. In our experiment, we characterize the coherence of superposition states of 87Rb atoms magnetically trapped on a superconducting atom-chip. We load atoms into a persistent-current trap engineered in the vicinity of an off-resonance coplanar resonator, and observe that the coherence of hyperfine ground states is preserved for several seconds. We show that large ensembles of a million of thermal atoms below 350 nK temperature and pure Bose-Einstein condensates with 3.5 x 10^5 atoms can be prepared and manipulated at the superconducting interface. This opens the path towards the rich dynamics of strong collective coupling regimes.
Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of $4 times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6$,$s. Ensembles of $1 times 10^5$ atoms can be produced at a 1$,$Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا