ترغب بنشر مسار تعليمي؟ اضغط هنا

Disk evolution in the solar neighborhood. I Disk frequencies from 1 to 100 Myr

100   0   0.0 ( 0 )
 نشر من قبل \\'Alvaro Ribas
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of circumstellar disks in 22 young (1 to 100 Myr) nearby (within 500 pc) associations over the entire mass spectrum using photometry covering from the optical to the mid-infrared. We compiled a catalog of 2340 spectroscopically-confirmed members of these nearby associations. We analyzed their spectral energy distributions and searched for excess related to the presence of protoplanetary disks in a homogeneous way. Sensitivity limits and spatial completeness were also considered. We derive disk fractions as probed by mid-infrared excess in these regions. The unprecedented size of our sample allows us to confirm the timescale of disk decay reported in the literature and to find new trends. The fraction of excess sources increases systematically if measured at longer wavelengths. Disk percentages derived using different wavelength ranges should therefore be compared with caution. The dust probed at 22-24 um evolves slower than that probed at shorter wavelengths (3.4-12 um). Assuming an exponential decay, we derive a timescale tau=4.2-5.8 Myr at 22-24 um for primordial disks, compared to 2-3 Myr at shorter wavelength (3.4-12 um). Primordial disks disappear around 10 Myr, matching in time a brief increase of the number of evolved disks. The increase in timescale of excess decay at longer wavelength is compatible with inside-out disk clearing scenarios. The increased timescale of decay and larger dispersion in the distribution of disk fractions at 22-24 um suggest that the inner and outer zones evolve differently, the latter potentially following a variety of evolutionary paths. The drop of primordial disks and the coincident rise of evolved disks at 10 Myr are compatible with planet formation theories suggesting that the disappearance of the gas is immediately followed by the dynamical stirring of the disk.

قيم البحث

اقرأ أيضاً

We perform a comparative numerical hydrodynamics study of embedded protostellar disks formed as a result of the gravitational collapse of cloud cores of distinct mass (M_cl=0.2--1.7 M_sun) and ratio of rotational to gravitational energy (beta=0.0028- -0.023). An increase in M_cl and/or beta leads to the formation of protostellar disks that are more susceptible to gravitational instability. Disk fragmentation occurs in most models but its effect is often limited to the very early stage, with the fragments being either dispersed or driven onto the forming star during tens of orbital periods. Only cloud cores with high enough M_cl or beta may eventually form wide-separation binary/multiple systems with low mass ratios and brown dwarf or sub-solar mass companions. It is feasible that such systems may eventually break up, giving birth to rogue brown dwarfs. Protostellar disks of {it equal} age formed from cloud cores of greater mass (but equal beta) are generally denser, hotter, larger, and more massive. On the other hand, protostellar disks formed from cloud cores of higher beta (but equal M_cl) are generally thinner and colder but larger and more massive. In all models, the difference between the irradiation temperature and midplane temperature triangle T is small, except for the innermost regions of young disks, dense fragments, and disks outer edge where triangle T is negative and may reach a factor of two or even more. Gravitationally unstable, embedded disks show radial pulsations, the amplitude of which increases along the line of increasing M_cl and beta but tends to diminish as the envelope clears. We find that single stars with a disk-to-star mass ratio of order unity can be formed only from high-beta cloud cores, but such massive disks are unstable and quickly fragment into binary/multiple systems.
The surface rotation rates of young solar-type stars vary rapidly with age from the end of the pre-main sequence through the early main sequence. Important changes in the dynamos operating in these stars may result from this evolution, which should b e observable in their surface magnetic fields. Here we present a study aimed at observing the evolution of these magnetic fields through this critical time period. We observed stars in open clusters and stellar associations of known ages, and used Zeeman Doppler Imaging to characterize their complex magnetic large-scale fields. Presented here are results for 15 stars, from 5 associations, with ages from 20 to 250 Myr, masses from 0.7 to 1.2 solar masses, and rotation periods from 0.4 to 6 days. We find complex large-scale magnetic field geometries, with global average strengths from 14 to 140 G. There is a clear trend towards decreasing average large-scale magnetic field strength with age, and a tight correlation between magnetic field strength and Rossby number. Comparing the magnetic properties of our zero-age main sequence sample to those of both younger and older stars, it appears that the magnetic evolution of solar-type stars during the pre-main sequence is primarily driven by structural changes, while it closely follows the stars rotational evolution on the main sequence.
We study the role of radial migration of stars on the chemical evolution of the Milky Way disk. In particular, we are interested in the impact of that process on the local properties of the disk (age-metallicity relation and its dispersion, metallici ty distribution, evolution of abundance ratios) and on the morphological properties of the resulting thick and thin disks.We use a model with several new or up-dated ingredients: atomic and molecular gas phases, star formation depending on molecular gas, yields from the recent homogeneous grid provided by Nomoto et al. (2013), observationally inferred SNIa rates. We describe radial migration with parametrised time- and radius-dependent diffusion coefficients, based on the analysis of a N-body+SPH simulation. We also consider parametrised radial gas flows, induced by the action of the Galactic bar. Our model reproduces well the present day values of most of the main global observables of the MW disk and bulge, and also the observed stacked evolution of MW-type galaxies from van Dokkum et al. (2013). The azimuthally averaged radial velocity of gas inflow is constrained to less than a few tenths of km/s. Radial migration is constrained by the observed dispersion in the age-metallicity relation. Assuming that the thick disk is the oldest (>9 Gyr) part of the disk, we find that the adopted radial migration scheme can reproduce quantitatively the main local properties of the thin and thick disk. The thick disk extends up to ~11 kpc and has a scale length of 1.8 kpc, considerably shorter than the thin disk, because of the inside-out formation scheme. We also show how, in this framework, current and forthcoming spectroscopic observations can constrain the nucleosynthesis yields of massive stars for the metallicity range of 0.1 solar to 2-3 solar.
522 - W.F. Thi , G. Mathews , F. Menard 2010
Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, makin g TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [OI] and [CII] as part of the Open-time large program GASPS. We complement this with continuum data and ground-based 12CO 3-2 and 13CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [OI] line at 63 micron. The other lines that were observed, [OI] at 145 micron and [CII] at 157 micron, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [12CO]/[13CO]=69 suggests a dust mass for grains with radius < 1 mm of ~1.9 times 10^-4 Msun (total solid mass of 3 times 10^-3 Msun) and a gas mass of (0.5--5) times 10^-3 Msun. The gas-to-dust mass may be lower than the standard interstellar value of 100.
Magnetic fields in turbulent, convective high-$beta$ plasma naturally develop highly tangled and complex topologies---the solar photosphere being the paradigmatic example. These fields are mostly undetectable by standard diagnostic techniques with fi nite spatio-temporal resolution due to cancellations of Zeeman polarization signals. Observations of resonance scattering polarization have been considered to overcome these problems. But up to now, observations of scattering polarization lack the necessary combination of high sensitivity and high spatial resolution in order to directly infer the turbulent magnetic structure at the resolution limit of solar telescopes. Here, we report the detection of clear spatial structuring of scattering polarization in a magnetically quiet solar region at disk center in the Sr~{sc i} 4607~AA~spectral line on granular scales, confirming theoretical expectations. We find that the linear polarization presents a strong spatial correlation with the local quadrupole of the radiation field. The result indicates that polarization survives the dynamic and turbulent magnetic environment of the middle photosphere and is thereby usable for spatially resolved Hanle observations. This is an important step toward the long-sought goal of directly observing turbulent solar magnetic fields at the resolution limit and investigating their spatial structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا