ترغب بنشر مسار تعليمي؟ اضغط هنا

Nature of finite temperature and density phase transitions in many-flavor QCD

40   0   0.0 ( 0 )
 نشر من قبل Shinji Ejiri
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the phase structure of (2+Nf)-flavor QCD, where two light flavors and Nf massive flavors exist, to discuss the feasibility of the electroweak baryogenesis in realistic technicolor scenario and to understand properties of finite density QCD. Because an appearance of a first order phase transition at finite temperature is a necessary condition for the baryogenesis, it is important to study the nature of finite temperature phase transition. Applying the reweighting method, the probability distribution function of the plaquette is calculated in the many-flavor QCD. Through the shape of the distribution function, we determine the critical mass of heavy flavors terminating the first order region, and find it to become larger with Nf. We moreover study the critical line at finite density and the first order region is found to become wider as increasing the chemical potential. We discuss how the properties of real (2+1)-flavor QCD at finite temperature and density can be extracted from simulations of many-flavor QCD.

قيم البحث

اقرأ أيضاً

136 - Owe Philipsen 2019
Neither the chiral limit nor finite baryon density can be simulated directly in lattice QCD, which severely limits our understanding of the QCD phase diagram. In this review I collect results for the phase structure in an extended parameter space of QCD, with varying numbers of flavours, quark masses, colours, lattice spacings, imaginary and isospin chemical potentials. Such studies help in understanding the underlying symmetries and degrees of freedom, and are beginning to provide a consistent picture constraining the possibilities for the physical phase diagram.
We investigate the nature of the chiral phase transition in the massless two-flavor QCD using the renormalization group improved gauge action and the Wilson quark action on $32^3times 16$, $24^3times 12$, and $16^3times 8$ lattices. We calculate the spacial and temporal propagators of the iso-triplet mesons in the pseudo-scalar ($PS$), scalar ($S$), vector ($V$) and axial-vector ($AV$) channels on the lattice of three sizes. We first verify that the RG scaling is excellently satisfied for all cases. This is consistent with the claim that the chiral phase transition is second order. Then we compare the spacial and temporal effective masses between the axial partners, i.e. $PS$ vs $S$ and $V$ vs $AV$, on each of the three size lattices. We find the effective masses of all of six cases for the axial partners agree remarkably. This is consistent with the claim that at least $Z_4$ subgroup of the $U_A(1)$ symmetry in addition to the $SU_A(2)$ symmetry is recovered at the chiral phase transition point.
102 - X. Liao 2001
We have studied the 3-flavor, finite temperature, QCD phase transition with staggred fermions on an $ N_t=4$ lattice. By studying a variety of quark masses we have located the critical point, $m_c$, where the first order 3-flavor transition ends as l ying in the region $0.32 le m_c le 0.35$ in lattice units
110 - T. Umeda , S. Ejiri , R. Iwami 2016
We study the curvature of the chiral transition/crossover line between the low-temperature hadronic phase and the high-temperature quark-gluon-plasma phase at low densities, performing simulations of two-flavor QCD with improved Wilson quarks. After confirming that the chiral order parameter defined by a Ward-Takahashi identity is consistent with the scaling of the O(4) universality class at zero chemical potential, we extend the scaling analysis to finite chemical potential to determine the curvature of the chiral transition/crossover line at low densities assuming the O(4) universality. To convert the curvature in lattice units to that of the $T_c(mu_B)$ in physical units, we evaluate the lattice scale applying a gradient flow method. We find $kappa=0.0006(1)$ in the chiral limit, which is much smaller than that obtained in (2+1)-flavor QCD with improved staggered quarks.
We present a lattice QCD based determination of the chiral phase transition temperature in QCD with two degenerate, massless quarks and a physical strange quark mass. We propose and calculate two novel estimators for the chiral transition temperature for several values of the light quark masses, corresponding to Goldstone pion masses in the range of $58~{rm MeV}lesssim m_pilesssim 163~{rm MeV}$. The chiral phase transition temperature is determined by extrapolating to vanishing pion mass using universal scaling analysis. Finite volume effects are controlled by extrapolating to the thermodynamic limit using spatial lattice extents in the range of $2.8$-$4.5$ times the inverse of the pion mass. Continuum extrapolations are carried out by using three different values of the lattice cut-off, corresponding to lattices with temporal extent $N_tau=6, 8$ and $12$. After thermodynamic, continuum and chiral extrapolations we find the chiral phase transition temperature $T_c^0=132^{+3}_{-6}$ MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا