ﻻ يوجد ملخص باللغة العربية
Radio source counts constrain galaxy populations and evolution, as well as the global star formation history. However, there is considerable disagreement among the published 1.4-GHz source counts below 100 microJy. Here we present a statistical method for estimating the microJy and even sub-microJy source count using new deep wide-band 3-GHz data in the Lockman Hole from the Karl G. Jansky Very Large Array (VLA). We analyzed the confusion amplitude distribution P(D), which provides a fresh approach in the form of a more robust model, with a comprehensive error analysis. We tested this method on a large-scale simulation, incorporating clustering and finite source sizes. We discuss in detail our statistical methods for fitting using Monte Carlo Markov chains, handling correlations, and systematic errors from the use of wide-band radio interferometric data. We demonstrated that the source count can be constrained down to 50 nJy, a factor of 20 below the rms confusion. We found the differential source count near 10 microJy to have a slope of -1.7, decreasing to about -1.4 at fainter flux densities. At 3GHz the rms confusion in an 8arcsec FWHM beam is ~ 1.2 microJy/beam, and a radio background temperature ~ 14mK. Our counts are broadly consistent with published evolutionary models. With these results we were also able to constrain the peak of the Euclidean normalized differential source count of any possible new radio populations that would contribute to the cosmic radio background down to 50 nJy.
Dusty, star forming galaxies contribute to a bright, currently unresolved cosmic far-infrared background. Deep Herschel-SPIRE images designed to detect and characterize the galaxies that comprise this background are highly confused, such that the bul
We describe the application of a statistical method to estimate submillimeter galaxy number counts from confusion limited observations by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Our method is based on a maximum likelihood fi
Our velocity relative to the cosmic microwave background (CMB) generates a dipole from the CMB monopole, which was accurately measured by COBE. The relative velocity also modulates and aberrates the CMB fluctuations, generating a small signature of s
Deep Swift UV/Optical Telescope (UVOT) imaging of the Chandra Deep Field South is used to measure galaxy number counts in three near ultraviolet (NUV) filters (uvw2: 1928 A, uvm2: 2246 A, uvw1: 2600 A) and the u band (3645 A). UVOT observations cover
Sunyaev-Zeldovich (SZ) surveys are promising probes of cosmology - in particular for Dark Energy (DE) -, given their ability to find distant clusters and provide estimates for their mass. However, current SZ catalogs contain tens to hundreds of objec