ﻻ يوجد ملخص باللغة العربية
Systematic first-principles molecular dynamics (MD) simulations with long simulation times (7-13 ps) for phase IV of solid hydrogen using different supercell sizes of 96, 288, 576, and 768 atoms established that the diffusive proton motions process in the graphene-like layer is an intrinsic property and independent of the simulation cell sizes. The present study highlights an often overlook issue in first-principles calculations that long time MD is essential to achieve ergodicity, which is mandatory for a proper description of dynamics of a system. The present results contradict a recent work [Phys. Rev. B 87, 174110 (2013)] in which the analysis was relied on short time slices (1-3 ps).
The recent discovery of phase IV of solid hydrogen and deuterium consisting of two alternate layers of graphenelike three-molecule rings and unbound H2 molecules have generated great interests. However, vibrational nature of phase IV remains poorly u
Quantum nuclear zero-point motions in solid H$_2$ and D$_2$ under pressure are investigated at 80 K up to 160 GPa by first-principles path-integral molecular dynamics calculations. Molecular orientations are well-defined in phase II of D$_2$, while s
We study the effect of temperature up to 1000K on the structure of dense molecular para-hydrogen and ortho-deuterium, using the path-integral Monte Carlo method. We find a structural phase transition from orientationally disordered hexagonal close pa
Being the simplest element with just one electron and proton the electronic structure of the Hydrogen atom is known exactly. However, this does not hold for the complex interplay between them in a solid and in particular not at high pressure that is
We present an accurate study of the static-nucleus electronic energy band gap of solid molecular hydrogen at high pressure. The excitonic and quasiparticle gaps of the $C2/c$, $Pc$, $Pbcn$, and $P6_3/m$ structures at pressures of 250, 300, and 350~GP