ترغب بنشر مسار تعليمي؟ اضغط هنا

Initial Conditions for Idealised Clusters Mergers, simulating El Gordo

197   0   0.0 ( 0 )
 نشر من قبل Julius Donnert
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. M. F. Donnert




اسأل ChatGPT حول البحث

Simulations of isolated binary mergers of galaxy clusters are a useful tool to study the evolution of these objects. For exceptionally massive systems they even represent the only viable way of simulation, because these are rare in typical cosmological simulations. We present a new practical model for these simulations based on the Hernquist dark matter profile. The hydrostatic equation is solved for a beta-model with $beta$ = 2/3 in this potential and approximate expressions for X-ray brightness and Compton-y parameter are derived. We show in detail how to setup such a system using SPH. The theoretical and several numerical models are compared to observed scaling relations of galaxy clusters and satisfactory agreement with the self-similar relations is found. The model is then applied to investigate the observed cluster ACT-CT J0102-4915 (El Gordo), a particularly massive merging high redshift cluster. We are able to reproduce the X-ray luminosity, SZ-effect and dark matter core distance as well as the rough shape of the observed cluster for reasonable model parameters. The lack of substruc- ture prevents us from obtaining the fluctuations observed in the wake of the system and we argue that the parent cluster of the system was highly disturbed even before the main merger observed today.



قيم البحث

اقرأ أيضاً

81 - Congyao Zhang 2015
The observational features of the massive galaxy cluster El Gordo (ACT-CL J0102-4915), such as the X-ray emission, the Sunyaev-Zeldovich (SZ) effect, and the surface mass density distribution, indicate that they are caused by an exceptional ongoing h igh-speed collision of two galaxy clusters, similar to the well-known Bullet Cluster. We perform a series of hydrodynamical simulations to investigate the merging scenario and identify the initial conditions for the collision in ACT-CL J0102-4915. By surveying the parameter space of the various physical quantities that describe the two colliding clusters, including their total mass (M), mass ratio (xi), gas fractions (f_b), initial relative velocity (V), and impact parameter (P), we find out an off-axis merger with P~800h_{70}^{-1}kpc, V~2500km/s, M~3x10^{15}Msun, and xi=3.6 that can lead to most of the main observational features of ACT-CL J0102-4915. Those features include the morphology of the X-ray emission with a remarkable wake-like substructure trailing after the secondary cluster, the X-ray luminosity and the temperature distributions, and also the SZ temperature decrement. The initial relative velocity required for the merger is extremely high and rare compared to that inferred from currently available Lambda cold dark matter (LCDM) cosmological simulations, which raises a potential challenge to the LCDM model, in addition to the case of the Bullet Cluster.
153 - Congyao Zhang 2017
The massive galaxy cluster El Gordo (ACT-CL J0102--4915) is a rare merging system with a high collision speed suggested by multi-wavelength observations and the theoretical modeling. Zhang et al. (2015) propose two types of mergers, a nearly head-on merger and an off-axis merger with a large impact parameter, to reproduce most of the observational features of the cluster, by using numerical simulations. The different merger configurations of the two models result in different gas motion in the simulated clusters. In this paper, we predict the kinetic Sunyaev-Zeldovich (kSZ) effect, the relativistic correction of the thermal Sunyaev-Zeldovich (tSZ) effect, and the X-ray spectrum of this cluster, based on the two proposed models. We find that (1) the amplitudes of the kSZ effect resulting from the two models are both on the order of $Delta T/Tsim10^{-5}$; but their morphologies are different, which trace the different line-of-sight velocity distributions of the systems; (2) the relativistic correction of the tSZ effect around $240 {rm,GHz}$ can be possibly used to constrain the temperature of the hot electrons heated by the shocks; and (3) the shift between the X-ray spectral lines emitted from different regions of the cluster can be significantly different in the two models. The shift and the line broadening can be up to $sim 25{rm,eV}$ and $50{rm,eV}$, respectively. We expect that future observations of the kSZ effect and the X-ray spectral lines (e.g., by ALMA, XARM) will provide a strong constraint on the gas motion and the merger configuration of ACT-CL J0102--4915.
The distinctive cometary X-ray morphology of the recently discovered massive galaxy cluster El Gordo (ACT-CT J0102-4915; z=0.87) indicates that an unusually high-speed collision is ongoing between two massive galaxy clusters. A bright X-ray bullet le ads a twin-tailed wake, with the SZ centroid at the end of the Northern tail. We show how the physical properties of this system can be determined using our FLASH-based, N-body/hydrodynamic model, constrained by detailed X-ray, Sunyaev-Zeldovich (SZ), and Hubble lensing and dynamical data. The X-ray morphology and the location of the two Dark Matter components and the SZ peak are accurately described by a simple binary collision viewed about 480 million years after the first core passage. We derive an impact parameter of ~300 kpc, and a relative initial infall velocity of ~2250 km/sec when separated by the sum of the two virial radii assuming an initial total mass of 2.15x10^(15) Msun and a mass ratio of 1.9. Our model demonstrates that tidally stretched gas accounts for the Northern X-ray tail along the collision axis between the mass peaks, and that the Southern tail lies off axis, comprising compressed and shock heated gas generated as the massive component plunges through the main cluster. The challenge for LCDM will be to find out if this physically extreme event can be plausibly accommodated when combined with the similarly massive, high infall velocity case of the Bullet cluster and other such cases being uncovered in the new SZ based surveys.
We present 610 MHz and 2.1 GHz imaging of the massive SZE-selected z=0.870 cluster merger ACT-CL J0102-4915 (El Gordo), obtained with the GMRT and the ATCA, respectively. We detect two complexes of radio relics separated by 3.4 (1.6 Mpc) along the sy stems NW-to-SE collision axis that have high integrated polarizations (33%) and steep spectral indices, consistent with creation via Fermi acceleration by shocks in the ICM. From the spectral index of the relics, we compute a Mach number of 2.5^{+0.7}_{-0.3} and shock speed of 2500^{+400}_{-300} km/s. With our ATCA data, we compute the Faraday depth across the NW relic and find a mean value of 11 rad/m^2 and standard deviation of 6 rad/m^2. With the integrated line-of-sight gas density derived from new Chandra observations, our Faraday depth measurement implies B_parallel~0.01 mu G in the cluster outskirts. The extremely narrow shock widths in the relics (<23 kpc) prevent us from placing a meaningful constraint on |B| using cooling time arguments. In addition to the relics, we detect a large (1.1 Mpc radius), powerful (log L_1.4[W/Hz]= 25.66+-0.12) radio halo with a Bullet-like morphology. The spectral-index map of the halo shows the synchrotron spectrum is flattest near the relics, along the collision axis, and in regions of high T_gas, all locations associated with recent energy injection. The spatial and spectral correlation between the halo emission and cluster X-ray properties supports primary-electron processes like turbulent reacceleration as the halo production mechanism. The halos integrated 610 MHz to 2.1 GHz spectral index is 1.2+-0.1, consistent with the clusters high T_gas in view of previously established global scaling relations. El Gordo is the highest-redshift cluster known to host a radio halo and/or radio relics, and provides new constraints on the non-thermal physics in clusters at z>0.6. [abridged]
We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915 El Gordo, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zeldovich (SZ) effect cluster known at z>0 .6. The Atacama Cosmology Telescope collaboration discovered El Gordo as the most significant SZ decrement in a sky survey area of 755 deg^2. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z=0.870, and velocity dispersion, s=1321+/-106 km/s. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of Tx=14.5+/-1.0 keV and 0.5-2.0 keV band luminosity of Lx=(2.19+/-0.11)x10^45 h70^-2 erg/s. We obtain several statistically consistent cluster mass estimates; using mass scaling relations with velocity dispersion, X-ray Yx, and integrated SZ, we estimate a cluster mass of M200a=(2.16+/-0.32)x10^15 M_sun/h70. The Chandra and VLT/FORS2 optical data also reveal that El Gordo is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6+/-0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22+/-6 keV. We also see a wake in the X-ray surface brightness caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. El Gordo is possibly a high-redshift analog of the famous Bullet Cluster. Such a massive cluster at this redshift is rare, although consistent with the standard L-CDM cosmology in the lower part of its allowed mass range. Massive, high-redshift mergers like El Gordo are unlikely to be reproduced in the current generation of numerical N-body cosmological simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا