ترغب بنشر مسار تعليمي؟ اضغط هنا

Bimodality Phenomenon in Finite and Infinite Systems Within an Exactly Solvable Statistical Model

30   0   0.0 ( 0 )
 نشر من قبل Kyrill Bugaev
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a few explicit counterexamples to the widely spread belief about an exclusive role of the bimodal nuclear fragment size distributions as the first order phase transition signal. In thermodynamic limit the bimodality may appear at the supercritical temperatures due to the negative values of the surface tension coefficient. Such a result is found within a novel exactly solvable formulation of the simplified statistical multifragmentation model based on the virial expansion for a system of the nuclear fragments of all sizes. The developed statistical model corresponds to the compressible nuclear liquid with the tricritical endpoint located at one third of the normal nuclear density. Its exact solution for finite volumes demonstrates the bimodal fragment size distribution right inside the finite volume analog of a gaseous phase. These counterexamples clearly demonstrate the pitfalls of Hill approach to phase transitions in finite systems.

قيم البحث

اقرأ أيضاً

101 - X. G. Wang , J. M. Zhang 2020
In an attempt to regularize a previously known exactly solvable model [Yang and Zhang, Eur. J. Phys. textbf{40}, 035401 (2019)], we find yet another exactly solvable toy model. The interesting point is that while the Hamiltonian of the model is param eterized by a function $f(x)$ defined on $[0, infty )$, its spectrum depends only on the end values of $f$, i.e., $f(0)$ and $f(infty )$. This model can serve as a good exercise in quantum mechanics at the undergraduate level.
Some results for two distinct but complementary exactly solvable algebraic models for pairing in atomic nuclei are presented: 1) binding energy predictions for isotopic chains of nuclei based on an extended pairing model that includes multi-pair exci tations; and 2) fine structure effects among excited $0^+$ states in $N approx Z$ nuclei that track with the proton-neutron ($pn$) and like-particle isovector pairing interactions as realized within an algebraic $sp(4)$ shell model. The results show that these models can be used to reproduce significant ranges of known experimental data, and in so doing, confirm their power to predict pairing-dominated phenomena in domains where data is unavailable.
In this paper a review is given of a class of sub-models of both approaches, characterized by the fact that they can be solved exactly, highlighting in the process a number of generic results related to both the nature of pair-correlated systems as w ell as collective modes of motion in the atomic nucleus.
We obtain an explicit solution for the stationary state populations of a dissipative Fano model, where a discrete excited state is coupled to a continumm set of states; both excited set of states are reachable by photo-excitation from the ground stat e. The dissipative dynamic is described by a Liouville equation in Lindblad form and the field intensity can take arbitrary values within the model. We show that the continuum states population as a function of laser frequency can always be expressed as a Fano profile plus a Lorentzian function with effective parameters whose explicit expressions are given in the case of a closed system coupled to a bath as well as for the original Fano scattering framework. Although the solution is intricate, it can be elegantly expressed as a linear transformation of the kernel of a $4times 4$ matrix which has the meaning of an effective Liouvillian. We unveil key notable processes related to the optical nonlinearity and which had not been reported to date: electromagnetic induced-transparency, population
71 - K. L. Yang , J. M. Zhang 2019
The eigenstates and eigenenergies of a toy model, which arose in idealizing a local quenched tight-binding model in a previous publication [Zhang and Yang, EPL 114, 60001 (2016)], are solved analytically. This enables us to study its dynamics in a di fferent way. This model can serve as a good exercise in quantum mechanics at the undergraduate level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا