ترغب بنشر مسار تعليمي؟ اضغط هنا

Search in 8 TeV proton-proton collisions with the MoEDAL monopole-trapping test array

142   0   0.0 ( 0 )
 نشر من قبل Philippe Mermod Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic monopole appears in theories of spontaneous gauge symmetry breaking and its existence would explain the quantisation of electric charge. MoEDAL is the latest approved LHC experiment, designed to search directly for monopoles produced in high-energy collisions. It has now taken data for the first time. The MoEDAL detectors are based on two complementary techniques: nuclear-track detectors are sensitive to the high-ionisation signature expected from a monopole, and the magnetic monopole trapper (MMT) relies on the stopping and trapping of monopoles inside an aluminium array which is then analysed with a superconducting magnetometer. The first results obtained with the MoEDAL MMT test array deployed in 2012 are presented. This experiment probes monopoles carrying a multiple of the fundamental unit magnetic charge for the first time at the LHC.



قيم البحث

اقرأ أيضاً

The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area $sim$18 m$^2$, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb$^{-1}$. No magnetic charge exceeding $0.5g_{rm D}$ (where $g_{rm D}$ is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV$leq m leq$ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for $1g_{rm D}leq|g|leq 6g_{rm D}$, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for $1g_{rm D}leq|g|leq 4g_{rm D}$. Under the assumption of Drell-Yan cross sections, mass limits are derived for $|g|=2g_{rm D}$ and $|g|=3g_{rm D}$ for the first time at the LHC, surpassing the results from previous collider experiments.
MoEDAL is designed to identify new physics in the form of long-lived highly-ionising particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detect ion techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC run-1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV $pp$ collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.
We update our previous search for trapped magnetic monopoles in LHC Run 2 using nearly six times more integrated luminosity and including additional models for the interpretation of the data. The MoEDAL forward trapping detector, comprising 222~kg of aluminium samples, was exposed to 2.11~fb$^{-1}$ of 13 TeV proton-proton collisions near the LHCb interaction point and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to the Dirac charge or above are excluded in all samples. The results are interpreted in Drell-Yan production models for monopoles with spins 0, 1/2 and 1: in addition to standard point-like couplings, we also consider couplings with momentum-dependent form factors. The search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.
The performance of all subsystems of the CMS muon detector has been studied by using a sample of proton--proton collision data at sqrt(s) = 7 TeV collected at the LHC in 2010 that corresponds to an integrated luminosity of approximately 40 inverse pi cobarns. The measured distributions of the major operational parameters of the drift tube (DT), cathode strip chamber (CSC), and resistive plate chamber (RPC) systems met the design specifications. The spatial resolution per chamber was 80-120 micrometers in the DTs, 40-150 micrometers in the CSCs, and 0.8-1.2 centimeters in the RPCs. The time resolution achievable was 3 ns or better per chamber for all 3 systems. The efficiency for reconstructing hits and track segments originating from muons traversing the muon chambers was in the range 95-98%. The CSC and DT systems provided muon track segments for the CMS trigger with over 96% efficiency, and identified the correct triggering bunch crossing in over 99.5% of such events. The measured performance is well reproduced by Monte Carlo simulation of the muon system down to the level of individual channel response. The results confirm the high efficiency of the muon system, the robustness of the design against hardware failures, and its effectiveness in the discrimination of backgrounds.
The MoEDAL trapping detector, consists of approximately 800 kg of aluminium volumes. It was exposed during Run-2 of the LHC program to 6.46 fb^-1 of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with ele ctric and magnetic charge) captured in the trapping detector was sought by passing the aluminium volumes comprising the detector through a SQUID magnetometer. The presence of a trapped dyon would be signalled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to 5 Dirac charges, and an electric charge up to 200 times the fundamental electric charge for mass limits in the range 790 - 3130 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا