ﻻ يوجد ملخص باللغة العربية
Galaxy clustering on very large scales can be probed via the 2-point correlation function in the general case of wide and deep separations, including all the lightcone and relativistic effects. Using our recently developed formalism, we analyze the behavior of the local and integrated contributions and how these depend on redshift range, linear and angular separations and luminosity function. Relativistic corrections to the local part of the correlation can be non-negligible but they remain generally sub-dominant. On the other hand, the additional correlations arising from lensing convergence and time-delay effects can become very important and even dominate the observed total correlation function. We investigate different configurations formed by the observer and the pair of galaxies, and we find that the case of near-radial large-scale separations is where these effects will be the most important.
We study the impact of lensing corrections on modeling cross correlations between CMB lensing and galaxies, cosmic shear and galaxies, and galaxies in different redshift bins. Estimating the importance of these corrections becomes necessary in the li
Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions, provide a potentially significant contaminant to measurements of cosmic shear. However, these intrinsic alignments are still poorly understood for ga
Measurements of time delays between multiple quasar images produced by strong lensing are reaching a sensitivity that makes them a promising cosmological probe. Future surveys will provide significantly more measurements, reaching unprecedented depth
We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsi
We consider an alternative formula for time delay in gravitational lensing. Imposing a smoothness condition on the gravitationally deformed paths followed by the photons from the source to the observer, we show that our formula displays the same degr