ﻻ يوجد ملخص باللغة العربية
We describe the construction and operation of an x-ray beam size monitor (xBSM), a device measuring $e^+$ and $e^-$ beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of $10-100~mu$m on a turn-by-turn, bunch-by-bunch basis at $e^pm$ beam energies of $sim2~$GeV. At such beam energies the xBSM images x-rays of $epsilonapprox$1-10$~$keV ($lambdaapprox 0.1-1$ nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50$~mu$m pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1$~$mA ($2.5times10^9$ particles) per bunch and inter-bunch spacing of as little as 4$~$ns. At $E_{rm b}=2.1 $GeV, systematic precision of $sim 1~mu$m is achieved for a beam size of $sim12~mu$m; this is expected to scale as $propto 1/sigma_{rm b}$ and $propto 1/E_{rm b}$. Achieving this precision requires comprehensive alignment and calibration of the detector, optical elements, and x-ray beam. Data from the xBSM have been used to extract characteristics of beam oscillations on long and short timescales, and to make detailed studies of low-emittance tuning, intra-beam scattering, electron cloud effects, and multi-bunch instabilities.
We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring $e^+$ and $e^-$ beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of $10-100~mu$m on a turn-by-turn,
We describe operation of the CESR-TA vertical beam size monitor (xBSM) with $e^pm$ beams with $E_{rm b}$=4 GeV. The xBSM measures vertical beam size by imaging synchrotron radiation x-rays through an optical element onto a detector array of 32 InGaAs
A novel interferometric method for absolute beam energy measurement is under development at MAMI. At the moment, the method is tested and optimized at an energy of 195 MeV. Despite the very small statistical uncertainty of the method, systematic effe
The technique of discrimination of the $e^+e^-to e^+e^-$ and $e^+e^-to pi^+pi^-$ events in energy range $0.5 < sqrt{s} < 1$ GeV by energy deposition in the calorimeter of SND detector was developed by applying machine learning method. Identification
To solve the discharge of the standard Bulk Micromegas and GEM detector, the GEM-Micromegas detector was developed in Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on