ﻻ يوجد ملخص باللغة العربية
Sparse Canonical Correlation Analysis (CCA) has received considerable attention in high-dimensional data analysis to study the relationship between two sets of random variables. However, there has been remarkably little theoretical statistical foundation on sparse CCA in high-dimensional settings despite active methodological and applied research activities. In this paper, we introduce an elementary sufficient and necessary characterization such that the solution of CCA is indeed sparse, propose a computationally efficient procedure, called CAPIT, to estimate the canonical directions, and show that the procedure is rate-optimal under various assumptions on nuisance parameters. The procedure is applied to a breast cancer dataset from The Cancer Genome Atlas project. We identify methylation probes that are associated with genes, which have been previously characterized as prognosis signatures of the metastasis of breast cancer.
In sparse principal component analysis we are given noisy observations of a low-rank matrix of dimension $ntimes p$ and seek to reconstruct it under additional sparsity assumptions. In particular, we assume here each of the principal components $math
Iterative hard thresholding (IHT) is a projected gradient descent algorithm, known to achieve state of the art performance for a wide range of structured estimation problems, such as sparse inference. In this work, we consider IHT as a solution to th
We consider testing the equality of two high-dimensional covariance matrices by carrying out a multi-level thresholding procedure, which is designed to detect sparse and faint differences between the covariances. A novel U-statistic composition is de
Sparse Group LASSO (SGL) is a regularized model for high-dimensional linear regression problems with grouped covariates. SGL applies $l_1$ and $l_2$ penalties on the individual predictors and group predictors, respectively, to guarantee sparse effect
We derive a formula for optimal hard thresholding of the singular value decomposition in the presence of correlated additive noise; although it nominally involves unobservables, we show how to apply it even where the noise covariance structure is not