ﻻ يوجد ملخص باللغة العربية
This paper contributes to the study of the Matsumoto metric F=alpha^2/beta, where the alpha is a Riemannian metric and the beta is a one form. It is shown that such a Matsumoto metric F is of scalar flag curvature if and only if F is projectively flat.
In this paper, the necessary and sufficient conditions for Matsumoto metrics $F=frac{alpha^2}{alpha-beta}$ to be Einstein are given. It is shown that if the length of $beta$ with respect to $alpha$ is constant, then the Matsumoto metric $F$ is an Ein
In this paper, we consider a special class of singular Finsler metrics: $m$-Kropina metrics which are defined by a Riemannian metric and a $1$-form. We show that an $m$-Kropina metric ($m e -1$) of scalar flag curvature must be locally Minkowskian in
If the flag curvature of a Finsler manifold reduces to sectional curvature, then locally either the Finsler metric is Riemannian, or the flag curvature is isotropic.
Recently, wind Riemannian structures (WRS) have been introduced as a generalization of Randers and Kropina metrics. They are constructed from the natural data for Zermelo navigation problem, namely, a Riemannian metric $g_R$ and a vector field $W$ (t
In the first part of this paper, we consider the problem of fill-in of nonnegative scalar curvature (NNSC) metrics for a triple of Bartnik data $(Sigma,gamma,H)$. We prove that given a metric $gamma$ on $mathbf{S}^{n-1}$ ($3leq nleq 7$), $(mathbf{S}^