ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of Sub- to Superluminal Motions in the M87 Jet: An Implication of the Acceleration from Sub-relativistic to Relativistic Speeds

217   0   0.0 ( 0 )
 نشر من قبل Masanori Nakamura
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The velocity field of the M87 jet from milli-arcsecond (mas) to arcsecond scales is extensively investigated together with new radio images taken by EVN observations. We detected proper motions of components located at between 160 mas from the core and the HST-1 complex for the first time. Newly derived velocity fields exhibits a systematic increase from sub-to-superluminal speed in the upstream of HST-1. If we assume that the observed velocities reflect the bulk flow, we here suggest that the M87 jet may be gradually accelerated through a distance of 10^6 times of the Schwarzschild radius of the supermassive black hole. The acceleration zone is co-spatial with the jet parabolic region, which is interpreted as the collimation zone of the jet (Asada & Nakamura 2012). The acceleration and collimation take place simultaneously, which we suggest a characteristic of magnetohydrodynamic flows. Distribution of the velocity field has a peak at HST-1, which is considered as the site of over-collimation, and shows a deceleration downstream of HST-1 where the jet is conical. Our interpretation of the velocity map in the M87 jet gives a hypothesis in AGNs that the acceleration and collimation zone of relativistic jets extends over the whole scale within the sphere of influence of the supermassive black hole.

قيم البحث

اقرأ أيضاً

We report the initial results of our high-cadence monitoring program on the radio jet in the active galaxy M87, obtained by the KVN and VERA Array (KaVA) at 22 GHz. This is a pilot study that preceded a larger KaVA-M87 monitoring program, which is cu rrently ongoing. The pilot monitoring was mostly performed every two to three weeks from December 2013 to June 2014, at a recording rate of 1 Gbps, obtaining the data for a total of 10 epochs. We successfully obtained a sequence of good quality radio maps that revealed the rich structure of this jet from <~1 mas to 20 mas, corresponding to physical scales (projected) of ~0.1-2 pc (or ~140-2800 Schwarzschild radii). We detected superluminal motions at these scales, together with a trend of gradual acceleration. The first evidence for such fast motions and acceleration near the jet base were obtained from recent VLBA studies at 43 GHz, and the fact that very similar kinematics are seen at a different frequency and time with a different instrument suggests these properties are fundamental characteristics of this jet. This pilot program demonstrates that KaVA is a powerful VLBI array for studying the detailed structural evolution of the M87 jet and also other relativistic jets.
Recent Very Long Baseline Interferometry observations of the relativistic jet in the M87 radio galaxy at 43 GHz show gradual relativistic acceleration of the plasma and suggest a linear dependence of Lorentz factor on jet radius at scales up to 8 mar csec (0.65 pc) from the core (2.5 marcsec in projection). General analysis of integrals of motion being unaltered along the jet and reflecting fundamental conservation laws shows that the above dependence implies a polytropic equation of state with index 4/3. The inferred value of the polytropic index appears independent of the exact nature of forces sustaining the transverse balance of the jet and indicates exact conservation of the longitudinal electric current and hence the existence of a stable internal electromagnetic structure at the scales under consideration. At this index the flow is hot and corresponds to relativistic thermodynamic motion of particles. Considerable weakening of the acceleration efficiency after 8 marcsec with the jet form being unchanged can be related to the plasma cooling, when the polytropic index becomes 5/3. Such a sharp change in the index without intermediate delay at 1.44 during cooling favours the existence of an electron-positron plasma and requires at least partial participation of the Blandford-Znajek mechanism in the launching of the M87 jet.
The binary neutron star merger GW170817 was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 41+/-3 Mpc. The radio and X-ray afterglows of GW170817 exhibited delayed onset, a gradual r ise in the emission with time as t^0.8, a peak at about 150 days post-merger, followed by a relatively rapid decline. To date, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon and a successful-jet cocoon (a.k.a. structured jet). However, the observational data have remained inconclusive as to whether GW170817 launched a successful relativistic jet. Here we show, through Very Long Baseline Interferometry, that the compact radio source associated with GW170817 exhibits superluminal motion between two epochs at 75 and 230 days post-merger. This measurement breaks the degeneracy between the models and indicates that, while the early-time radio emission was powered by a wider-angle outflow (cocoon), the late-time emission was most likely dominated by an energetic and narrowly-collimated jet, with an opening angle of <5 degrees, and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the growing evidence linking binary neutron star mergers and short gamma-ray bursts.
We discuss stationary and axisymmetric trans-magnetosonic outflows in the magnetosphere of a rotating black hole (BH). Ejected plasma from the plasma source located near the BH is accelerated far away to form a relativistic jet. In this study, the pl asma acceleration efficiency and conversion of fluid energy from electromagnetic energy are considered by employing the trans-fast magnetosonic flow solution derived by Takahashi & Tomimatsu (2008). Considering the parameter dependence of magnetohydrodynamical flows, we search for the parameters of the trans-magnetosonic outflow solution to the recent M87 jet observations and obtain the angular velocity values of the magnetic field line and angular momentum of the outflow in the magnetized jet flow. Therefore, we estimate the locations of the outer light surface, Alfven surface, and separation surface of the flow. We also discuss the electromagnetic energy flux from the rotating BH (i.e., the Blandford-Znajek process), which suggests that the energy extraction mechanism is effective for the M87 relativistic jet.
Chandra HRC observations are investigated for evidence of proper motion and brightness changes in the X-ray jet of the nearby radio galaxy M87. Using images spanning 5 yr, proper motion is measured in the X-ray knot HST-1, with a superluminal apparen t speed of $6.3 pm 0.4 c$, or $24.1 pm 1.6rm mas yr^{-1}$, and in Knot D, with a speed of $2.4pm 0.6c$. Upper limits are placed on the speeds of the remaining jet features. The X-ray knot speeds are in excellent agreement with existing measurements in the radio, optical, and ultraviolet. Comparing the X-ray results with images from the Hubble Space Telescope indicates that the X-ray and optical/UV emitting regions co-move. The X-ray knots also vary by up to 73% in brightness, whereas there is no evidence of brightness changes in the optical/UV. Using the synchrotron cooling models, we determine lower limits on magnetic field strengths of $sim 420~mu rm G$ and $sim 230~mu rm G$ for HST-1 and Knot A, respectively, consistent with estimates of the equipartition fields. Together, these results lend strong support to the synchrotron cooling model for Knot HST-1, which requires that its superluminal motion reflects the speed of the relativistic bulk flow in the jet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا