ترغب بنشر مسار تعليمي؟ اضغط هنا

Use of Instrumental Neutron Activation Analysis to investigate the distribution of trace elements among subsamples of solid materials

229   0   0.0 ( 0 )
 نشر من قبل Giancarlo D'Agostino Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The results of analytical measurements performed with solid-sampling techniques are affected by the distribution of the analytes within the matrix. The effect becomes significant in case of determination of trace elements in small subsamples. In this framework we propose a measurement model based on Instrumental Neutron Activation Analysis to determine the relative variability of the amount of an analyte among subsamples of a material. The measurement uncertainty is evaluated and includes the counting statistics, the full-energy gamma peak efficiency and the spatial gradient of the neutron flux at the irradiation position. The data we obtained in a neutron activation experiment and showing the relative variability of As, Au, Ir, Sb and W among subsamples of a highly pure Rh foil are also presented.

قيم البحث

اقرأ أيضاً

The determination of the Avogadro constant plays a key role in the redefinition of the kilogram in terms of a fundamental constant. The present experiment makes use of a silicon single-crystal highly enriched in 28Si that must have a total impurity m ass fraction smaller than a few parts in 109. To verify this requirement, we previously developed a relative analytical method based on neutron activation for the elemental characterization of a sample of the precursor natural silicon crystal WASO 04. The method is now extended to fifty-nine elements and applied to a monoisotopic 28Si single-crystal that was grown to test the achievable enrichment. Since this crystal was likely contaminated, this measurement tested also the detection capabilities of the analysis. The results quantified contaminations by Ge, Ga, As, Tm, Lu, Ta, W and Ir and, for a number of the detectable elements, demonstrated that we can already reach the targeted 1 ng/g detection limit.
We investigated the use of neutron activation to estimate the 30Si mole fraction of the ultra-pure silicon material highly enriched in 28Si for the measurement of the Avogadro constant. Specifically, we developed a relative method based on Instrument al Neutron Activation Analysis and using a natural-Si sample as a standard. To evaluate the achievable uncertainty, we irradiated a 6 g sample of a natural-Si material and modeled experimentally the signal that would be produced by a sample of the 28Si-enriched material of similar mass and subjected to the same measurement conditions. The extrapolation of the expected uncertainty from the experimental data indicates that a measurement of the 30Si mole fraction of the 28Si-enriched material might reach a 4% relative combined standard uncertainty.
Using a setup for testing a prototype for a satellite-borne cosmic-ray ion detector, we have operated a stack of scintillator and silicon detectors on top of the Princess Sirindhorn Neutron Monitor (PSNM), an NM64 detector at 2560-m altitude at Doi I nthanon, Thailand (18.59 N, 98.49 E). Monte Carlo simulations have indicated that about 15% of the neutron counts by PSNM are due to interactions (mostly in the lead producer) of GeV-range protons among the atmospheric secondary particles from cosmic ray showers, which can be detected by the scintillator and silicon detectors. Those detectors can provide a timing trigger for measurement of the propagation time distribution of such neutrons as they scatter and propagate through the NM64, processes that are similar whether the interaction was initiated by an energetic proton (for 15% of the count rate) or neutron (for 80% of the count rate). This propagation time distribution underlies the time delay distribution between successive neutron counts, from which we can determine the leader fraction (inverse multiplicity), which has been used to monitor Galactic cosmic ray spectral variations over $sim$1-40 GV. Here we have measured and characterized the propagation time distribution from both the experimental setup and Monte Carlo simulations of atmospheric secondary particle detection. We confirm a known propagation time distribution with a peak (at $approx$70 microseconds) and tail over a few ms, dominated by neutron counts. We fit this distribution using an analytic model of neutron diffusion and absorption, for both experimental and Monte Carlo results. In addition we identify a group of prompt neutron monitor pulses that arrive within 20 microseconds of the charged-particle trigger, of which a substantial fraction can be attributed to charged-particle ionization in a proportional counter, according to both experimental and Monte Carlo ...
We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10 cm x 10 cm) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, as well as breakup geometries, as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the TSR storage ring facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A huge isotope effect is observed when comparing the relative branching ratio between the D2+H and the HD+D channel; the ratio 2B(D2+H)/B(HD+D), which is measured to be 1.27 +/- 0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7 +/- 0.5 at ~5 eV.
Radioactivity is understood to be described by a Poisson process, yet some measurements of nuclear decays appear to exhibit unexpected variations. Generally, the isotopes reporting these variations have long half lives, which are plagued by large mea surement uncertainties. In addition to these inherent problems, there are some reports of time-dependent decay rates and even claims of exotic neutrino-induced variations. We present a dedicated experiment for the stable long-term measurement of gamma emissions resulting from $beta$ decays, which will provide high-quality data and allow for the identification of potential systematic influences. Radioactive isotopes are monitored redundantly by thirty-two 76 mm $times$ 76 mm NaI(Tl) detectors in four separate temperature-controlled setups across three continents. In each setup, the monitoring of environmental and operational conditions facilitates correlation studies. The deadtime-free performance of the data acquisition system is monitored by LED pulsers. Digitized photomultiplier waveforms of all events are recorded individually, enabling a study of time-dependent effects spanning microseconds to years, using both time-binned and unbinned analyses. We characterize the experiments stability and show that the relevant systematics are accounted for, enabling precise measurements of effects at levels well below $mathcal{O}(10^{-4})$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا