ﻻ يوجد ملخص باللغة العربية
We have carried out a theoretical analysis of the Landau-Ginzburg-Wilson effective field theory of a classical incommensurate CDW in the presence of weak quenched disorder. While the possibility a sharp phase transition and long-range CDW order are precluded in such systems, we show that any discrete symmetry breaking aspect of the charge order -- nematicity in the case of the unidirectional (stripe) CDW we consider explicitly -- generically survives up to a non-zero critical disorder strength. Such vestigial order, which is subject to unambiguous macroscopic detection, can serve as an avatar of what would be CDW order in the ideal, zero disorder limit. Various recent experiments in the pseudo-gap regime of the hole-doped cuprate high-temperature superconductors are readily interpreted in light of these results.
Nematic order has manifested itself in a variety of materials in the cuprate family. We propose an effective field theory of a layered system with incommensurate, intertwined spin- and charge-density wave (SDW and CDW) orders, each of which consists
In the framework of the t-J model for cuprates we analyze the development of a pseudo gap in the density of states (DOS), which at low doping starts to emerge for temperatures T<J and persists up to the optimum doping. The analysis is based on numeri
We investigate the specific influence of structural disorder on the suppression of antiferromagnetic order and on the emergence of cuprate superconductivity. We single out pure disorder, by focusing on a series of Y$_{z}$Eu$_{1-z}$Ba$_2$Cu$_3$O$_{6+y
Relationship between the superconducting gap and the pseudogap has been the subject of controversies. In order to clarify this issue, we have studied the superconducting gap and pseudogap of the high-Tc superconductor La2-xSrxCuO4 (x=0.10, 0.14) by a
Recent excperiments (ARPES, Raman) suggest the presence of two distinct energy gaps in high-Tc superconductors (HTSC), exhibiting different doping dependences. Results of a variational cluster approach to the superconducting state of the two-dimensio