ترغب بنشر مسار تعليمي؟ اضغط هنا

Validation of Geant4 Electron Pair Production by Photons

118   0   0.0 ( 0 )
 نشر من قبل Maria Grazia Pia
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first results of a project in progress for the validation of the simulation of electron-positron pair production are presented. They concern the pair production cross section in a low energy range close to the production threshold. The results hint to effects due to the granularity of tabulated cross sections.



قيم البحث

اقرأ أيضاً

Backscattering is a sensitive probe of the accuracy of electron scattering algorithms implemented in Monte Carlo codes. The capability of the Geant4 toolkit to describe realistically the fraction of electrons backscattered from a target volume is ext ensively and quantitatively evaluated in comparison with experimental data retrieved from the literature. The validation test covers the energy range between approximately 100 eV and 20 MeV, and concerns a wide set of target elements. Multiple and single electron scattering models implemented in Geant4, as well as preassembled selections of physics models distributed within Geant4, are analyzed with statistical methods. The evaluations concern Gean
Radioactive decays are of concern in a wide variety of applications using Monte-Carlo simulations. In order to properly estimate the quality of such simulations, knowledge of the accuracy of the decay simulation is required. We present a validation o f the original Geant4 Radioactive Decay Module, which uses a per-decay sampling approach, and of an extended package for Geant4-based simulation of radioactive decays, which, in addition to being able to use a refactored per-decay sampling, is capable of using a statistical sampling approach. The validation is based on measurements of calibration isotope sources using a high purity Germanium (HPGe) detector; no calibration of the simulation is performed. For the considered validation experiment equivalent simulation accuracy can be achieved with per-decay and statistical sampling.
215 - M. Augelli 2009
A R&D project, named Nano5, has been recently launched to study an architectural design in view of addressing new experimental issues related to particle transport in high energy physics and other related physics disciplines with Geant4. In this fram e, the first step has involved the redesign of the photon interaction models currently available in Geant4; this task has motivated a thorough investigation of the physics and computational features of these models, whose first results are presented here.
A test of Geant4 simulation of electron backscattering recently published in this journal prompted further investigation into the causes of the observed behaviour. An interplay between features of geometry and physics algorithms implemented in Geant4 is found to significantly affect the accuracy of backscattering simulation in some physics configurations.
80 - H. Athar 2001
The cross section for muon pair productions by electrons scattering over photons, $sigma_{MPP}$, is calculated analytically in the leading order. It is pointed out that for the center-of-mass energy range, $s geq 5 m^{2}_{mu}$, the cross section for $sigma_{MPP}$ is less than $1 mu $b. The differential energy spectrum for either of the resulting muons is given for the purpose of high-energy neutrino astronomy. An implication of our result for a recent suggestion concerning the high-energy cosmic neutrino generation through this muon pair is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا