ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for a lighter Higgs: parametrisation and sample tests

83   0   0.0 ( 0 )
 نشر من قبل Jean-Baptiste Flament
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure of the Higgs sector is a major issue in the quest of a detailed description of the electroweak interactions. Most of the effort is devoted to the study of the standard model--like Higgs boson at 126 GeV, however the experimental collaborations at the LHC are also searching for extra scalar particles whose presence may hint to an extended Higgs sector, typical of many extensions of the standard model. We study a model independent parametrisation of a scalar particle lighter than the 126 GeV Higgs boson, which may be easily implemented in the ongoing searches by ATLAS and CMS. Indeed many effective Lagrangians/parametrisations used at present for the description of the Higgs sector implicitly assume that no light particles other than the standard model ones are present in the spectrum. We therefore introduce a parametrisation of a two scalars model, one corresponding to the 126 GeV Higgs boson and the other to a lighter scalar. After the introduction of such a tool, we consider two typical examples falling in this category, in order to illustrate the use of our formalism: the two Higgs doublet model and the next to minimal supersymmetric standard model. Our results agree with the specific studies performed for these models. Furthermore, employing such a generic parametrisation allows us to translate the bounds to any model beyond the standard model falling into this class.

قيم البحث

اقرأ أيضاً

The discovery of a 125 GeV Higgs boson at the Large Hadron Collider strongly motivates direct searches for additional Higgs bosons. In a type I two Higgs doublet model there is a large region of parameter space at $tanbeta > 5$ that is currently unco nstrained experimentally. We show that the process $gg to H to A Z to ZZh$ can probe this region, and can be the discovery mode for an extended Higgs sector at the LHC. We analyze 9 promising decay modes for the $ZZh$ state, and we find that the most sensitive final states are $ellellellell bb$, $ellell jjbb$, $ellell u ugammagamma$ and $ellellellell +{}$missing energy.
114 - M.A. Sanchis-Lozano 2002
Leptonic decays of vector-states of bottomonium are analized searching for a light pseudoscalar Higgs-like neutral boson manifesting via an apparent breaking of lepton universality.
47 - J. L. Diaz-Cruz 1997
We study the possibility to detect heavy physics effects in the interactions of Higgs bosons and the top quark at future colliders using the effective Lagrangian approach. The modification of the interactions may enhance the production of Higgs boson s at hadron colliders through the mechanisms of gluon fusion and associated production with a W boson or $tbar{t}$ pairs. The most promising signature is through the decay of the Higgs boson into two photons, whose branching ratio is also enhanced in this approach. As a consequence of our analysis we get a bound on the chromomagnetic dipole moment of the top quark.
We investigate the potential of LHC resonance searches in leptonic final states to probe the $Z$ in the minimal $U(1)_{B-L}$ model. Considering the current constraints on the $Z$ in terms of its mass $m_{Z}$ and the associated gauge coupling $g_{B-L} $ as well as constraints in the Higgs sector, we analyse the potential of dilepton and four lepton final states for $Z$ production. This includes Drell-Yan production, Higgs mediated decays and final state radiation processes concentrating only on the ATLAS and CMS detectors at the LHC. We show that the four-lepton final state is sensitive to $m_{Z}$ as low as 0.25 GeV. Furthermore, setting the Higgs mixing to $sinalpha = 0.3$, this final state has a strong sensitivity and it probes regions of parameter space where the $Z$ is long-lived. We demonstrate the sensitivity at the High Luminosity LHC and comment on the potential of probing displaced vertices due to long-lived $Z$. Finally, we also comment on the strength of $Z$ and Higgs mediated heavy neutrino processes by taking into account the constraints derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا