ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film

124   0   0.0 ( 0 )
 نشر من قبل Thomas Maurer
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A particular interesting plasmonic system is that of metallic nanostructures interacting with metal films. As the LSPR behavior of gold nanostructures (Au NPs) on the top of a gold thin film is exquisitely sensitive to the spacer distance of the film-Au NPs, we investigate in the present work the influence of a few-layered graphene spacer on the LSPR behavior of the NPs. The idea is to evidence the role of few-layered graphene as one of the thinnest possible spacer. We first show that the coupling to the Au film induces a strong lowering at around 507nm and sharpening of the main LSPR of the Au NPs. Moreover, a blue shift in the main LSP resonance of about 13 nm is observed in the presence of a few-layered graphene spacer when compared to the case where gold nanostructures are directly linked to a gold thin film. Numerical simulations suggest that this LSP mode is dipolar and that the hot spots of the electric field are pushed to the top corners of the NPs, which makes it very sensitive to surrounding medium optical index changes and thus appealing for sensing applications. A figure of merit (FoM) of such a system (gold/graphene/ Au NPs) is 2.8, as compared to 2.1 for gold/Au NPs either a 33% sensitivity gain and opens up new sensing strategies.



قيم البحث

اقرأ أيضاً

We report on measurements of the Casimir force in a sphere-plane geometry using a cryogenic force microscope to move the force probe in situ over different materials. We show how the electrostatic environment of the interacting surfaces plays an impo rtant role in weak force measurements and can overcome the Casimir force at large distance. After minimizing these parasitic forces, we measure the Casimir force between a gold-coated sphere and either a gold-coated or a heavily doped silicon surface in the 100-400 nm distance range. We compare the experimental data with theoretical predictions and discuss the consequence of a systematic error in the scanner calibration on the agreement between experiment and theory. The relative force over the two surfaces compares favorably with theory at short distance, showing that this Casimir force experiment is sensitive to the dielectric properties of the interacting surfaces.
We use the Wick-rotated time-dependent supersymmetry to construct models of two-dimensional Dirac fermions in presence of an electrostatic grating. We show that there appears omnidirectional perfect transmission through the grating at specific energy . Additionally to being transparent for incoming fermions, the grating hosts strongly localized states.
We examine the ballistic conduction through Au-NiMnSb-Au heterostructures consisting of up to four units of NiMnSb in the scattering region. We investigate the dependence of the transmission function computed within the local spin density approximati on (LSDA) of the density functional theory (DFT) on the number of half-metallic units in the scattering region. For a single NiMnSb unit the transmission function displays a spin polarization of around 50 % in a window of 1 eV centered around the Fermi level. By increasing the number of layers an almost complete spin polarization of the transmission is obtained in the same energy window. Supplementing the DFT-LSDA calculations with local electronic interactions, of Hubbard-type on the Mn sites, leads to a hybridization between the interface and many-body states. The significant reduction of the spin polarization seen in the density of states is not apparent in the spin-polarization of the conduction electron transmission, which suggests the localized nature of the hybridized interface and many-body induced states.
High quality graphene nanoribbons (GNRs) grown by on-surface synthesis strategies with atomic precision can be controllably doped by inserting heteroatoms or chemical groups in the molecular precursors. Here, we study the electronic structure of armc hair GNRs substitutionally doped with di-boron moieties at the center, through a combination of scanning tunneling spectroscopy, angle-resolved photoemission, and density functional theory simulations. Boron atoms appear with a small displacement towards the surface signaling their stronger interaction with the metal. We find two boron-rich flat bands emerging as impurity states inside the GNR band gap, one of them particularly broadened after its hybridization with the gold surface states. In addition, the boron atoms shift the conduction and valence bands of the pristine GNR away from the gap edge, and leave unaffected the bands above and below, which become the new frontier bands and have negligible boron character. This is due to the selective mixing of boron states with GNR bands according to their symmetry. Our results depict that the GNRs band structure can be tuned by modifying the separation between di-boron moieties.
We report an easy and broadly applicable method for the controlled self-assembly of atomically precise Au32(nBu3P)12Cl8 nanoclusters into micro-crystals. This enables the determination of emergent optoelectronic properties resulting from long-range o rder in such assemblies. Compared to the same nanoclusters in glassy, polycrystalline ensembles, we find a 100-fold increase in the electric conductivity and charge carrier mobility as well as additional optical transitions. We show that these effects are due to a vanishing energetic disorder and a drastically reduced activation energy to charge transport in the highly ordered assemblies. This first structure-transport correlation on self-assembled superstructures of atomically precise gold nanoclusters paves the way towards functional materials with novel collective optoelectronic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا