ﻻ يوجد ملخص باللغة العربية
Flexible magnetic devices, i.e., magnetic devices fabricated on flexible substrates, are very attractive in application of detecting magnetic field in arbitrary surface, non-contact actuators, and microwave devices due to the stretchable, biocompatible, light-weight, portable, and low cost properties. Flexible magnetic films are essential for the realization of various functionalities of flexible magnetic devices. To give a comprehensive understanding for flexible magnetic films and related devices, we have reviewed recent advances in the studies of flexible magnetic films including fabrication methods, magnetic and transport properties of flexible magnetic films, and their applications in magnetic sensors, actuators, and microwave devices. Three typical methods were introduced to prepare the flexible magnetic films. Stretching or bending the flexible magnetic films offers a good way to apply mechanical strain on magnetic films, so that magnetic anisotropy, exchanged bias, coercivity, and magnetoresistance can be effectively manipulated. Finally, a series of examples were shown to demonstrate the great potential of flexible magnetic films for future applications.
Metastable manganite perovskites displaying the antiferromagnetic so-called E-phase are predicted to be multiferroic. Due to the need of high-pressures for the synthesis of this phase, this prediction has only been confirmed in bulk HoMnO3. Here we r
The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented
CaFe2O4 is a highly anisotropic antiferromagnet reported to display two spin arrangements with up-up-down-down (phase A) and up-down-up-down (phase B) configurations. The relative stability of these phases is ruled by the competing ferromagnetic and
Simple vacuum evaporation technique for deposition of dyes on various solid surfaces has been developed. The method is compatible with conventional solvent-free nanofabrication processing enabling fabrication of nanoscale optoelectronic devices. Thin
Recently, nanolaminated ternary carbides have attracted immense interest due to the concomitant presence of both ceramic and metallic properties. Here, we grow nanolaminate Ti3AlC2 thin films by pulsed laser deposition on c-axis-oriented sapphire sub