ﻻ يوجد ملخص باللغة العربية
We continue our study on smooth complex projective varieties $X$ of maximal Albanese dimension and of general type satisfying $chi(X, omega_X)=0$. We formulate a conjectural characterization of such varieties and prove this conjecture when the Albanese variety has only three simple factors.
Euler-symmetric projective varieties are nondegenerate projective varieties admitting many C*-actions of Euler type. They are quasi-homogeneous and uniquely determined by their fundamental forms at a general point. We show that Euler-symmetric projec
Let $f:mathcal{X}to S$ be a proper holomorphic submersion of complex manifolds and $G$ a complex reductive linear algebraic group with Lie algebra $mathfrak{g}$. Assume also given a holomorphic principal $G$-bundle $mathcal{P}$ over $mathcal{X}$ whic
We give some explicit bounds for the number of cobordism classes of real algebraic manifolds of real degree less than $d$, and for the size of the sum of $mod 2$ Betti numbers for the real form of complex manifolds of complex degree less than $d$.
We construct smooth projective varieties of general type with the smallest known volumes in high dimensions. Among other examples, we construct varieties of general type with many vanishing plurigenera, more than any polynomial function of the dimens
We prove a formula, conjectured by Zagier, for the $S_n$-equivariant Euler characteristic of the top weight cohomology of $M_{g,n}$.