ترغب بنشر مسار تعليمي؟ اضغط هنا

Varieties with vanishing holomorphic Euler characteristic II

490   0   0.0 ( 0 )
 نشر من قبل Zhi Jiang
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue our study on smooth complex projective varieties $X$ of maximal Albanese dimension and of general type satisfying $chi(X, omega_X)=0$. We formulate a conjectural characterization of such varieties and prove this conjecture when the Albanese variety has only three simple factors.



قيم البحث

اقرأ أيضاً

285 - Baohua Fu , Jun-Muk Hwang 2017
Euler-symmetric projective varieties are nondegenerate projective varieties admitting many C*-actions of Euler type. They are quasi-homogeneous and uniquely determined by their fundamental forms at a general point. We show that Euler-symmetric projec tive varieties can be classified by symbol systems, a class of algebraic objects modeled on the systems of fundamental forms at general points of projective varieties. We study relations between the algebraic properties of symbol systems and the geometric properties of Euler-symmetric projective varieties. We describe also the relation between Euler-symmetric projective varieties of dimension n and equivariant compactifications of the vector group G_a^n.
Let $f:mathcal{X}to S$ be a proper holomorphic submersion of complex manifolds and $G$ a complex reductive linear algebraic group with Lie algebra $mathfrak{g}$. Assume also given a holomorphic principal $G$-bundle $mathcal{P}$ over $mathcal{X}$ whic h is endowed with a holomorphic connection $ abla$ relative to $f$ that is flat (this to be thought of as a holomorphic family of compact complex manifolds endowed with a holomorphic principal $G$-bundle with flat connection). We show that a refinement of the Chern-Weil homomorphism yields a graded algebra homomorphism $mathbb{C}[mathfrak{g}]^Gto bigoplus_{nge 0} H^0(S,,Omega^n_{S,cl}otimes R^nf_*mathbb{C})$, where $Omega^n_{S,cl}$ stands for the sheaf of closed holomorphic $n$-forms on $S$. If the fibers of $f$ are compact Riemann surfaces and we take as our invariant the Killing form, then we recover Goldmans closed holomorphic $2$-form on the base $S$.
108 - Yves Laszlo 2004
We give some explicit bounds for the number of cobordism classes of real algebraic manifolds of real degree less than $d$, and for the size of the sum of $mod 2$ Betti numbers for the real form of complex manifolds of complex degree less than $d$.
We construct smooth projective varieties of general type with the smallest known volumes in high dimensions. Among other examples, we construct varieties of general type with many vanishing plurigenera, more than any polynomial function of the dimens ion. As part of the construction, we solve exactly an optimization problem about equidistribution on the unit circle in terms of the sawtooth (or signed fractional part) function. We also solve exactly the analogous optimization problem for the sine function. Equivalently, we determine the optimal inequality of the form $sum_{k=1}^m a_ksin kxleq 1$, in the sense that $sum_{k=1}^m a_k$ is maximal.
We prove a formula, conjectured by Zagier, for the $S_n$-equivariant Euler characteristic of the top weight cohomology of $M_{g,n}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا