ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic AGN jets II. Jet properties and mixing effects for episodic jet activity

321   0   0.0 ( 0 )
 نشر من قبل Sander Walg
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Various radio galaxies show signs of having gone through episodic jet outbursts in the past. An example is the class of double-double radio galaxies (DDRGs). However, to follow the evolution of an individual source in real-time is impossible due to the large time scales involved. Numerical studies provide a powerful tool to investigate the temporal behavior of episodic jet outbursts in a (magneto-)hydrodynamical setting. We simulate the injection of two jets from active galactic nuclei (AGN), separated by a short interruption time. Three different jet models are compared. We find that an AGN jet outburst cycle can be divided into four phases. The most prominent phase occurs when the restarted jet is propagating completely inside the hot and inflated cocoon left behind by the initial jet. In that case, the jet-head advance speed of the restarted jet is significantly higher than the initial jet-head. While the head of the initial jet interacts strongly with the ambient medium, the restarted jet propagates almost unimpeded. As a result, the restarted jet maintains a strong radial integrity. Just a very small fraction of the amount of shocked jet material flows back through the cocoon compared to that of the initial jet and much weaker shocks are found at the head of the restarted jet. We find that the features of the restarted jet in this phase closely resemble the observed properties of a typical DDRG.



قيم البحث

اقرأ أيضاً

We have carried out a Chandra X-ray and multi-frequency radio VLBA study of the AGN TXS 0128+554, which is associated with the Fermi gamma-ray source 4FGL J0131.2+5547. The AGN is unresolved in a target 19.3 ks Chandra image, and its spectrum is well fit by a simple absorbed power law model, with no distinguishable spectral features. Its relatively soft X-ray spectrum compared to other CSOs may be indicative of a thermal emission component, for which we were able to obtain an upper temperature limit of kT = 0.08 keV. The compact radio morphology and measured advance speed of 0.32c +- 0.07c indicate a kinematic age of only 82 y +- 17 y, placing TXS 0128+554 among the youngest members of the compact symmetric object (CSO) class. The lack of compact, inverted spectrum hotspots and an emission gap between the bright inner jet and outer radio lobe structure indicate that the jets have undergone episodic activity, and were re-launched a decade ago. The predicted gamma-ray emission from the lobes, based on an inverse Compton-emitting cocoon model, is three orders of magnitude below the observed Fermi LAT flux. A comparison to other Fermi-detected and non-Fermi detected CSOs with redshift z<0.1 indicates that the gamma-ray emission likely originates in the inner jet/core region, and that nearby, recently launched AGN jets are primary candidates for detection by the Fermi LAT instrument.
Current observations have shown that astrophysical jets reveal strong signs of radial structure. They suggest that the inner region of the jet, the jet spine, consists of a low-density, fast-moving gas, while the outer region of the jet consists of a more dense and slower moving gas, called the jet sheath. Moreover, if jets carry angular momentum, the resultant centrifugal forces lead to a radial stratification. Current observations are not able to fully resolve the radial structure, so little is known about its actual profile. We present three AGN jet models in $2.5D$ of which two have been given a radial structure. The first model is a homogeneous jet, the only model that doesnt carry angular momentum; the second model is a spine-sheath jet with an isothermal equation of state; and the third jet model is a (piecewise) isochoric spine-sheath jet, with constant but different densities for jet spine and jet sheath. In this paper, we look at the effects of radial stratification on jet integrity, mixing between the different jet components and global morphology of the jet-head and surrounding cocoon.
We explore the connection between the black hole mass and its relativistic jet for a sample of radio-loud AGN (z < 1), in which the relativistic jet parameters are well estimated by means of long term monitoring with the 14m Metsahovi millimeter wave telescope and the Very Long Base-line Array (VLBA). NIR host galaxy images taken with the NOTCam on the Nordic Optical Telescope (NOT) and retrieved from the 2MASS all-sky survey allowed us to perform a detailed surface brightness decomposition of the host galaxies in our sample and to estimate reliable black hole masses via their bulge luminosities. We present early results on the correlations between black hole mass and the relativistic jet parameters. Our preliminary results suggest that the more massive the black hole is, the faster and the more luminous jet it produces.
We present three dimensional relativistic hydrodynamical simulations of a precessing jet interacting with the intracluster medium and compare the simulated jet structure with the observed structure of the Hydra A northern jet. For the simulations, we use jet parameters obtained in the parameter space study of the first paper in this series and probe different values for the precession period and precession angle. We find that for a precession period P = 1 Myr and a precession angle = 20 degree the model reproduces i) the curvature of the jet, ii) the correct number of bright knots within 20 kpc at approximately correct locations, and iii) the turbulent transition of the jet to a plume. The Mach number of the advancing bow shock = 1.85 is indicative of gentle cluster atmosphere heating during the early stages of the AGNs activity.
Physical parameters of AGN jets observed with Very Long Baseline Interferometry (VLBI) are usually inferred from the core shift measurements or flux and size measured at a peak frequency of the synchrotron spectrum. Both are preceded by modelling of the observed VLBI jet structure with a simple Gaussian templates. We propose to infer the jets parameters using the inhomogeneous jet model directly - bypassing the modelling of the source structure with a Gaussian templates or image deconvolution. We applied Bayesian analysis to multi-frequency VLBA observations of radio galaxy NGC 315 and found that its parsec-scale jet is well described by the inhomogeneous conical model. Our results favour electron-positron jet. We also detected a component in a counter jet. Its position implies the presence of an external absorber with a steep density gradient at close ($r=0.1$ pc) distance from the central engine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا