ﻻ يوجد ملخص باللغة العربية
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
We present the first four-flavour lattice calculation of the leading-order hadronic vacuum-polarisation contribution to the anomalous magnetic moment of the muon, a_{mu}^{hvp}, and the hadronic running of the QED coupling constant, Delta alpha_{QED}^
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, $a_mathrm{mu}^{rm hvp}$, arising from quark-connected Feynman graphs. It is based on ensembles
We evaluate the neutron electric dipole moment $vert vec{d}_Nvert$ using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using $N_f{=}2{+}1{+}1$ twisted mass fermions at one value of t
We calculate the leading order hadronic contribution to the muon anomalous magnetic moment using twisted mass lattice QCD. The pion masses range from 330 MeV to 650 MeV. We use two lattice spacings, a=0.079 fm and 0.063 fm, to study lattice artifacts
We compute the leading order hadronic vacuum polarization (LO-HVP) contribution to the anomalous magnetic moment of the muon, $(g_mu-2)$, using lattice QCD. Calculations are performed with four flavors of 4-stout-improved staggered quarks, at physica