ترغب بنشر مسار تعليمي؟ اضغط هنا

Timing Noise Analysis of NANOGrav Pulsars

127   0   0.0 ( 0 )
 نشر من قبل Delphine Perrodin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze timing noise from five years of Arecibo and Green Bank observations of the seventeen millisecond pulsars of the North-American Nanohertz Observatory for Gravitational Waves (NANOGrav) pulsar timing array. The weighted autocovariance of the timing residuals was computed for each pulsar and compared against two possible models for the underlying noise process. The first model includes red noise and predicts the autocovariance to be a decaying exponential as a function of time lag. The second model is Gaussian white noise whose autocovariance would be a delta function. We also perform a ``nearest-neighbor correlation analysis. We find that the exponential process does not accurately describe the data. Two pulsars, J1643-1224 and J1910+1256, exhibit weak red noise, but the rest are well described as white noise. The overall lack of evidence for red noise implies that sensitivity to a (red) gravitational wave background signal is limited by statistical rather than systematic uncertainty. In all pulsars, the ratio of non-white noise to white noise is low, so that we can increase the cadence or integration times of our observations and still expect the root-mean-square of timing residual averages to decrease by the square-root of observation time, which is key to improving the sensitivity of the pulsar timing array.

قيم البحث

اقرأ أيضاً

We present a new analysis of the profile data from the 47 millisecond pulsars comprising the 12.5-year data set of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), which is presented in a parallel paper (Alam et al. 2021a; NG12.5). Our reprocessing is performed using wideband timing methods, which use frequency-dependent template profiles, simultaneous time-of-arrival (TOA) and dispersion measure (DM) measurements from broadband observations, and novel analysis techniques. In particular, the wideband DM measurements are used to constrain the DM portion of the timing model. We compare the ensemble timing results to NG12.5 by examining the timing residuals, timing models, and noise model components. There is a remarkable level of agreement across all metrics considered. Our best-timed pulsars produce encouragingly similar results to those from NG12.5. In certain cases, such as high-DM pulsars with profile broadening, or sources that are weak and scintillating, wideband timing techniques prove to be beneficial, leading to more precise timing model parameters by 10-15%. The high-precision, multi-band measurements of several pulsars indicate frequency-dependent DMs. Compared to the narrowband analysis in NG12.5, the TOA volume is reduced by a factor of 33, which may ultimately facilitate computational speed-ups for complex pulsar timing array analyses. This first wideband pulsar timing data set is a stepping stone, and its consistent results with NG12.5 assure us that such data sets are appropriate for gravitational wave analyses.
Radio pulsars are often used as clocks in a wide variety of experiments. Imperfections in the clock, known as timing noise, have the potential to reduce the significance of, or even thwart e.g. the attempt to find a stochastic gravitational wave (GW) background. We measure the timing noise in a group of 129 mostly middle-aged pulsars (i.e. characterstic ages near 1~Myr) observed with the Parkes radio telescope on a monthly basis since 2014. We examine four different metrics for timing noise, but it remains unclear which, if any, provides the best determination. In spite of this, it is evident that these pulsars have significantly less timing noise than their younger counterparts, but significantly more than the (much older) millisecond pulsars (MSPs). As with previous authors, we find a strong correlation between timing noise and the pulsar spin-down rate, $dot{ u}$. However, for a given $dot{ u}$ there is a spread of about a factor 30 in the strength of the timing noise likely indicating that nuclear conditions in the interior of the stars differs between objects. We briefly comment on the implications for GW detection through pulsar timing arrays as the level of timing noise in MSPs may be less than predicted.
We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-freq uency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, with six high--timing-precision pulsars observed weekly, and all were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and, if necessary, binary parameters, in addition to time-variable dispersion delays and parameters that quantify pulse-profile evolution with frequency. The new timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of large orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. Future papers will use these data to constrain or detect the signatures of gravitational-wave signals.
We show the results of our analysis of the pulse broadening phenomenon in 25 pulsars at several frequencies using the data gathered with GMRT and Effelsberg radiotelescopes. Twenty two of these pulsars were not studied in that regard before and our w ork has increased the total number of pulsars with multi-frequency scattering measurements to almost 50, basically doubling the amount available so far. The majority of the pulsars we observed have high to very-high dispersion measures (DM>200) and our results confirm the suggestion of Loehmer et al.(2001, 2004) that the scatter time spectral indices for high-DM pulsars deviate from the value predicted by a single thin screen model with Kolmogorovs distribution of the density fluctuations. In this paper we discuss the possible explanations for such deviations.
We present time-of-arrival (TOA) measurements and timing models of 47 millisecond pulsars (MSPs) observed from 2004 to 2017 at the Arecibo Observatory and the Green Bank Telescope by the North American Nanohertz Observatory for Gravitational Waves (N ANOGrav). The observing cadence was three to four weeks for most pulsars over most of this time span, with weekly observations of six sources. These data were collected for use in low-frequency gravitational wave searches and for other astrophysical purposes. We detail our observational methods and present a set of TOA measurements, based on narrowband analysis, in which many TOAs are calculated within narrow radio-frequency bands for data collected simultaneously across a wide bandwidth. A separate set of wideband TOAs will be presented in a companion paper. We detail a number of methodological changes compared to our previous work which yield a cleaner and more uniformly processed data set. Our timing models include several new astrometric and binary pulsar measurements, including previously unpublished values for the parallaxes of PSRs J1832-0836 and J2322+2057, the secular derivatives of the projected semi-major orbital axes of PSRs J0613-0200 and J2229+2643, and the first detection of the Shapiro delay in PSR J2145-0750. We report detectable levels of red noise in the time series for 14 pulsars. As a check on timing model reliability, we investigate the stability of astrometric parameters across data sets of different lengths. We report flux density measurements for all pulsars observed. Searches for stochastic and continuous gravitational waves using these data will be subjects of forthcoming publications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا