ترغب بنشر مسار تعليمي؟ اضغط هنا

Shower development of particles with momenta from 1 to 10 GeV in the CALICE Scintillator-Tungsten HCAL

106   0   0.0 ( 0 )
 نشر من قبل Angela Lucaci-Timoce
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lepton colliders are considered as options to complement and to extend the physics programme at the Large Hadron Collider. The Compact Linear Collider (CLIC) is an $e^+e^-$ collider under development aiming at centre-of-mass energies of up to 3 TeV. For experiments at CLIC, a hadron sampling calorimeter with tungsten absorber is proposed. Such a calorimeter provides sufficient depth to contain high-energy showers, while allowing a compact size for the surrounding solenoid. A fine-grained calorimeter prototype with tungsten absorber plates and scintillator tiles read out by silicon photomultipliers was built and exposed to particle beams at CERN. Results obtained with electrons, pions and protons of momenta up to 10 GeV are presented in terms of energy resolution and shower shape studies. The results are compared with several GEANT4 simulation models in order to assess the reliability of the Monte Carlo predictions relevant for a future experiment at CLIC.



قيم البحث

اقرأ أيضاً

We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Syn chrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.
165 - C.Adloff , Y.Karyotakis , J.Repond 2010
A prototype silicon-tungsten electromagnetic calorimeter for an ILC detector was tested in 2007 at the CERN SPS test beam. Data were collected with electron and hadron beams in the energy range 8 to 80 GeV. The analysis described here focuses on the interactions of pions in the calorimeter. One of the main objectives of the CALICE program is to validate the Monte Carlo tools available for the design of a full-sized detector. The interactions of pions in the Si-W calorimeter are therefore confronted with the predictions of various physical models implemented in the GEANT4 simulation framework.
The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.
A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test b eam at DESY with momenta between 1 and 6 GeV/c. The prototypes performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.
Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The c alorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9.6 are compared.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا