ﻻ يوجد ملخص باللغة العربية
We construct interpolating functions fully compatible with S-duality. We then consider the problem of resumming perturbative expansions for anomalous dimensions of low twist non-protected operators in N=4 super Yang-Mills theory. When the rank of the gauge group is small, the interpolations suggest that anomalous dimensions of leading twist operators take their maximum value at the point $tau =exp(ipi/3)$. For fixed spin and large enough rank, there is a level-crossing region, where the anomalous dimension of the leading twist operator reaches its maximum and then bounces back.
We describe a new approach to computing the chiral part of correlation functions of stress-tensor supermultiplets in N=4 SYM that relies on symmetries, analytic properties and the structure of the OPE only. We demonstrate that the correlation functio
We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum o
In this paper we study the form factors for the half-BPS operators $mathcal{O}^{(n)}_I$ and the $mathcal{N}=4$ stress tensor supermultiplet current $W^{AB}$ up to the second order of perturbation theory and for the Konishi operator $mathcal{K}$ at fi
We consider gluon and gluino scattering amplitudes in large N beta-deformed N=4 SYM with real beta. A direct inspection of the planar diagrams shows that the scattering amplitudes to all orders in perturbation theory are the same as in the undeformed
We present a new method for computing the Konishi anomalous dimension in N=4 SYM at weak coupling. It does not rely on the conventional Feynman diagram technique and is not restricted to the planar limit. It is based on the OPE analysis of the four-p