ﻻ يوجد ملخص باللغة العربية
DANSS is a highly segmented 1m^3 plastic scintillator detector. Its 2500 scintillator strips have a Gd loaded reflective cover. Light is collected with 3 wave length shifting fibers per strip and read out with 50 PMTs and 2500 SiPMs. The DANSS will be installed under the industrial 3 GW reactor of the Kalinin Nuclear Power Plant at distances varying from 9.7m to 12.2m from the reactor core. Tests of the detector prototype DANSSino demonstrated that in spite of a small size (20x20x100 cm^3) it is quite sensitive to reactor antineutrinos, detecting about 70 Inverse Beta Decay events per day with the signal-to-background ratio of about unity. The prototype tests have demonstrated feasibility to reach the design performance of the DANSS detector. The DANSS experiment will detect about 10 thousand antineutrino events per day with a background below ~1%. Detector will be calibrated every day and its position will be changed frequently to reduce systematic errors. These features will provide a high sensitivity to reactor antineutrino oscillations to sterile neutrinos, suggested recently to explain a so-called reactor anomaly. Data taking will start already next year.
DANSSino is a reduced pilot version of a solid-state detector of reactor antineutrinos (to be created within the DANSS project and installed under the industrial 3 GW(th) reactor of the Kalinin Nuclear Power Plant -- KNPP). Numerous tests performed a
Scintillation light is used in liquid argon (LAr) neutrino detectors to provide a trigger signal, veto information against cosmic rays, and absolute event timing. In this work, we discuss additional opportunities offered by detectors with enhanced se
A high pressure xenon gas time projection chamber with electroluminescent amplification (EL HPGXe TPC) searching for the neutrinoless double beta ($0 ubetabeta$) decay offers: excellent energy resolution ($0.5-0.7%$ FWHM at the $Q_{betabeta}$), by am
A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to r
The Icarus T600 detector represents the first example of a fully working large-mass LAr detector. After operations at the LNGS INFN laboratories, it has been refurbished at CERN in 2015-2017 and then installed as far detector on the BNB neutrino beam