ﻻ يوجد ملخص باللغة العربية
Absorption-line spectroscopy is a powerful tool used to estimate element abundances in the nearby as well as distant universe. The accuracy of the abundances thus derived is, naturally, limited by the accuracy of the atomic data assumed for the spectral lines. We have recently started a project to perform the new extensive atomic data calculations used for optical/UV spectral lines in the plasma modeling code Cloudy using state-of-the-art quantal calculations. Here we demonstrate our approach by focussing on S II, an ion used to estimate metallicities for Milky Way interstellar clouds as well as distant damped Lyman-alpha (DLA) and sub-DLA absorber galaxies detected in the spectra of quasars and gamma-ray bursts (GRBs). We report new extensive calculations of a large number of energy levels of S II, and the line strengths of the resulting radiative transitions. Our calculations are based on the configuration interaction approach within a numerical Hartree-Fock framework, and utilize both non-ralativistic and quasirelativistic one-electron radial orbitals. The results of these new atomic calculations are then incorporated into Cloudy and applied to a lab plasma, and a typical DLA, for illustrative purposes. The new results imply relatively modest changes (~0.04 dex) to the metallicities estimated from S II in past studies. These results will be readily applicable to other studies of S II in the Milky Way and other galaxies.
Damped Lyman-alpha (DLA) and sub-DLA absorbers in quasar spectra provide the most sensitive tools for measuring element abundances of distant galaxies. Estimation of abundances from absorption lines depends sensitively on the accuracy of the atomic d
We present new deep optical spectra of 9 high-z radio galaxies (HzRGs) at z > 2.7 obtained with FORS2 on VLT. These rest-frame ultraviolet spectra are used to infer the metallicity of the narrow-line regions (NLRs) in order to investigate the chemica
Using a sample of 57 VLT FORS spectra in the redshift range 1.37<z<3.40 (selected mainly from the FORS Deep Field survey) and a comparison sample with 36 IUE spectra of local (z ~ 0) starburst galaxies we derive CIV and SiIV equivalent width values a
We present a new class of hydrodynamical models for the formation of bulges (either massive elliptical galaxies or classical bulges in spirals) in which we implement detailed prescriptions for the chemical evolution of H, He, O and Fe. Our results hi
The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding universe. But the properties of nearby galaxies that can be observed in greatest detail suggest a still better t