ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational and distributed heating effects of a cD galaxy on the hydrodynamical structure of its host cluster

77   0   0.0 ( 0 )
 نشر من قبل Curtis J. Saxton
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Curtis J. Saxton




اسأل ChatGPT حول البحث

We investigate the effects of a cD galaxys gravity and AGN heating of the host galaxy cluster. We consider a standard prescription for the hydrodynamics, with the structures determined by mass continuity, momentum and energy conservation equations in spherical symmetry. The cluster comprises a dark matter halo (DM) and ionised X-ray emitting intracluster gas (ICM), which jointly determine the gravitational potential. The cD galaxy is an additive gravitational potential component. The DM assumes a polytropic equation of state (determined by its microphysics), which could be non-radiative self-interacting particles or more exotically interacting particles. The AGN provides distributed heating, counteracting radiative cooling. Stationary density and velocity dispersion profiles are obtained by numerically integrating the hydrodynamic equations with appropriate boundary conditions. The minimum gas temperature in the cluster core is higher when a cD galaxy is present than when it is absent. The solutions also yield a point-like mass concentration exceeding a minimum mass: presumably the AGNs supermassive black hole (SMBH). Consistency with observed SMBH masses constrains the possible DM equations of state. The constraints are looser when a cD galaxy is present. Distributed (AGN) heating alters cluster global properties, and also reduces the lower limits for the central point-mass, for the preferred DM models in which the dark particles have greater heat capacity than point particles. Eluding these constraints would require dominant non-spherical or anisotropic effects (e.g. bulk rotation, non-radial streaming, asymmetric lumps, or a strong magnetic field).

قيم البحث

اقرأ أيضاً

We report the discovery of a folded gravitationally lensed image, Hamiltons Object, found in a HST image of the field near the AGN SDSS J223010.47-081017.8 ($z=0.62$). The lensed images are sourced by a galaxy at a spectroscopic redshift of 0.8200$pm 0.0005$ and form a fold configuration on a caustic caused by a foreground galaxy cluster at a photometric redshift of 0.526$pm0.018$ seen in the corresponding Pan-STARRS PS1 image and marginally detected as a faint ROSAT All-Sky Survey X-ray source. The lensed images exhibit properties similar to those of other folds where the source galaxy falls very close to or straddles the caustic of a galaxy cluster. The folded images are stretched in a direction roughly orthogonal to the critical curve, but the configuration is that of a tangential cusp. Guided by morphological features, published simulations and similar fold observations in the literature, we identify a third or counter-image, confirmed by spectroscopy. Because the fold-configuration shows highly distinctive surface brightness features, follow-up observations of microlensing or detailed investigations of the individual surface brightness features at higher resolution can further shed light on kpc-scale dark matter properties. We determine the local lens properties at the positions of the multiple images according to the observation-based lens reconstruction of Wagner et al. (2019). The analysis is in accordance with a mass density which hardly varies on an arc-second scale (6 kpc) over the areas covered by the multiple images.
We present a dynamical analysis of the galaxy cluster AC114 based on a catalogue of 524 velocities. Of these, 169 (32%) are newly obtained at ESO (Chile) with the VLT and the VIMOS spectrograph. Data on individual galaxies are presented and the accur acy of the measured velocities is discussed. Dynamical properties of the cluster are derived. We obtain an improved mean redshift value z= 0.31665 +/- 0.0008 and velocity dispersion sigma= 1893+73-82 kms. A large velocity dispersion within the core radius and the shape of the infall pattern suggests that this part of the cluster is in a radial phase of relaxation with a very elongated radial filament spanning 12000 kms. A radial foreground structure is detected within the central 0.5/h Mpc radius, recognizable as a redshift group at the same central redshift value. We analyze the color distribution for this archetype Butcher-Oemler galaxy cluster and identify the separate red and blue galaxy sequences. The latter subset contains 44% of confirmed members of the cluster, reaching magnitudes as faint as R_{f}= 21.1 (1.0 magnitude fainter than previous studies). We derive a mass M_{200}= (4.3 pm 0.7) x 10^15 Msun/h. In a subsequent paper we will utilize the spectral data presented here to explore the mass-metallicity relation for this intermediate redshift cluster.
We investigate the relation between the properties of Brightest Cluster Galaxies (BCGs) and those of their host clusters. To quantify the properties of cluster hot gas, we employ the parameter $Z$ of the fundamental plane of X-ray clusters. It is fou nd that the offset of the BCG from the peak of cluster X-ray emission is larger for smaller $Z$ clusters. The parameter $Z$ (not the redshift {it z}), which mainly depends on virial density $rho_{rm {vir}}$, is considered to represent the formation epoch of a cluster. We thus consider that the offset of the BCG is correlated with the dynamical equilibrium state of its host cluster. On the contrary, no significant correlation is found between the absolute optical magnitude of the BCG and the parameter $Z$. If the extreme brightness of the BCG is mainly acquired in the course of cluster evolution by environmental effect, BCGs are expected to be brighter in large $Z$ clusters. Our result is not consistent with this simplified view. On the contrary, it is possible that the extreme brightness of the BCG is likely to be determined in the early history of cluster collapse.
For the first time, we explore the dynamics of the central region of a galaxy cluster within $r_{500}sim 600h^{-1}$~kpc from its center by combining optical and X-ray spectroscopy. We use (1) the caustic technique that identifies the cluster substruc tures and their galaxy members with optical spectroscopic data, and (2) the X-ray redshift fitting procedure that estimates the redshift distribution of the intracluster medium (ICM). We use the spatial and redshift distributions of the galaxies and of the X-ray emitting gas to associate the optical substructures to the X-ray regions. When we apply this approach to Abell 85 (A85), a complex dynamical structure of A85 emerges from our analysis: a galaxy group, with redshift $z=0.0509 pm 0.0021$ is passing through the cluster center along the line of sight dragging part of the ICM present in the cluster core; two additional groups, at redshift $z=0.0547 pm 0.0022$ and $z=0.0570 pm 0.0020$, are going through the cluster in opposite directions, almost perpendicularly to the line of sight, and have substantially perturbed the dynamics of the ICM. An additional group in the outskirts of A85, at redshift $z=0.0561 pm 0.0023$, is associated to a secondary peak of the X-ray emission, at redshift $z=0.0583^{+0.0039}_{-0.0047}$. Although our analysis and results on A85 need to be confirmed by high-resolution spectroscopy, they demonstrate how our new approach can be a powerful tool to constrain the formation history of galaxy clusters by unveiling their central and surrounding structures.
The use of Type Ia Supernovae (SNe Ia) as cosmological tools has motivated significant effort to: understand what drives the intrinsic scatter of SN Ia distance modulus residuals after standardization, characterize the distribution of SN Ia colors, a nd explain why properties of the host galaxies of the SNe correlate with SN Ia distance modulus residuals. We use a compiled sample of $sim1450$ spectroscopically confirmed, photometric light-curves of SN Ia and propose a solution to these three problems simultaneously that also explains an empirical 11$sigma$ detection of the dependence of Hubble residual scatter on SN Ia color. We introduce a physical model of color where intrinsic SN Ia colors with a relatively weak correlation with luminosity are combined with extrinsic dust-like colors ($E(B-V)$) with a wide range of extinction parameter values ($R_V$). This model captures the observed trends of Hubble residual scatter and indicates that the dominant component of SN Ia intrinsic scatter is from variation in $R_V$. We also find that the recovered $E(B-V)$ and $R_V$ distributions differ based on global host-galaxy stellar mass and this explains the observed correlation ($gamma$) between mass and Hubble residuals seen in past analyses as well as an observed 4.5$sigma$ dependence of $gamma$ on SN Ia color. This finding removes any need to prescribe different intrinsic luminosities to different progenitor systems. Finally we measure biases in the equation-of-state of dark energy ($w$) up to $|Delta w|=0.04$ by replacing previous models of SN color with our dust-based model; this bias is larger than any systematic uncertainty in previous SN Ia cosmological analyses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا