ترغب بنشر مسار تعليمي؟ اضغط هنا

Proposal for a Graphene Plasmonic THz Emitter

88   0   0.0 ( 0 )
 نشر من قبل D. C. Schmadel
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a terahertz radiation source based on the excitation of plasma resonances in graphene structures by means of mixing two NIR laser signals with a THz difference frequency. The process is the photo-thermo-electric effect which has recently been demonstrated to be operative at THz frequencies in graphene. An antenna couples the THz radiation out of the sub-wavelength graphene element and into the far field. The emission is monochromatic with a bandwidth determined by that of the NIR laser sources. The output power of the device as a function of the emitter frequency is estimated at tens of microWatts.

قيم البحث

اقرأ أيضاً

Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ul trafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth, across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge carrier dynamics in graphene, and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460 % enhancement compared to the grey-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2,000 K under ambient conditions, as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications.
In the presence of strong magnetic fields the electronic bandstructure of graphene drastically changes. The Dirac cone collapses into discrete non-equidistant Landau levels, which can be externally tuned by changing the magnetic field. In contrast to conventional materials, specific Landau levels are selectively addressable using circularly polarized light. Exploiting these unique properties, we propose the design of a tunable laser operating in the technologically promising terahertz spectral range. To uncover the many-particle physics behind the emission of light, we perform a fully quantum mechanical investigation of the non-equilibrium dynamics of electrons, phonons, and photons in optically pumped Landau-quantized graphene embedded into an optical cavity. The gained microscopic insights allow us to predict optimal experimental conditions to realize a technologically promising terahertz laser.
We present a computational study of terahertz optical properties of a grating-coupled plasmonic structure based on micrometer-thin InSb layers. We find two strong absorption resonances that we interpret as standing surface plasmon modes and investiga te their dispersion relations, dependence on InSb thickness, and the spatial distribution of the electric field. The observed surface plasmon modes are well described by a simple theory of the air/InSb/air trilayer. The plasmonic response of the grating/InSb structure is highly sensitive to the dielectric environment and the presence of an analyte (e.g., lactose) at the InSb interface, which is promising for terahertz plasmonic sensor applications. We determine the sensor sensitivity to be 7200 nm per refractive index unit (or 0.06 THz per refractive index unit). The lower surface plasmon mode also exhibits a splitting when tuned in resonance with the vibrational mode of lactose at 1.37 THz. We propose that such interaction between surface plasmon and vibrational modes can be used as the basis for a new sensing modality that allows the detection of terahertz vibrational fingerprints of an analyte.
A bound state between a quantum emitter (QE) and surface plasmon polaritons (SPPs) can be formed, where the QE is partially stabilized in its excited state. We put forward a general approach for calculating the energy level shift at a negative freque ncy $omega$, which is just the negative of the nonresonant part for the energy level shift at positive frequency $-omega$. We also propose an efficient formalism for obtaining the long-time value of the excited-state population without calculating the eigenfrequency of the bound state or performing a time evolution of the system, in which the probability amplitude for the excited state in the steady limit is equal to one minus the integral of the evolution spectrum over the positive frequency range. With the above two quantities obtained, we show that the non-Markovian decay dynamics in the presence of a bound state can be obtained by the method based on the Greens function expression for the evolution operator. A general criterion for identifying the existence of a bound state is presented. These are numerically demonstrated for a QE located around a nanosphere and in a gap plasmonic nanocavity. These findings are instructive in the fields of coherent light-matter interactions.
The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene wit h subwavelength field confinement of plasmonic/metallic structures is not fully realized. Here we report fabrication and study of hybrid graphene-plasmonic modulators. We consider several types of modulators and identify the most promising one for light modulation at telecom and near-infrared. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا