ﻻ يوجد ملخص باللغة العربية
We propose a terahertz radiation source based on the excitation of plasma resonances in graphene structures by means of mixing two NIR laser signals with a THz difference frequency. The process is the photo-thermo-electric effect which has recently been demonstrated to be operative at THz frequencies in graphene. An antenna couples the THz radiation out of the sub-wavelength graphene element and into the far field. The emission is monochromatic with a bandwidth determined by that of the NIR laser sources. The output power of the device as a function of the emitter frequency is estimated at tens of microWatts.
Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ul
In the presence of strong magnetic fields the electronic bandstructure of graphene drastically changes. The Dirac cone collapses into discrete non-equidistant Landau levels, which can be externally tuned by changing the magnetic field. In contrast to
We present a computational study of terahertz optical properties of a grating-coupled plasmonic structure based on micrometer-thin InSb layers. We find two strong absorption resonances that we interpret as standing surface plasmon modes and investiga
A bound state between a quantum emitter (QE) and surface plasmon polaritons (SPPs) can be formed, where the QE is partially stabilized in its excited state. We put forward a general approach for calculating the energy level shift at a negative freque
The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene wit