ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric quantization of Dirac manifolds

187   0   0.0 ( 0 )
 نشر من قبل Yuji Hirota
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Yuji Hirota




اسأل ChatGPT حول البحث

We define prequantization for Dirac manifolds to generalize known procedures for Poisson and (pre) symplectic manifolds by using characteristic distributions obtained from 2-cocycles associated to Dirac structures. Given a Dirac manifold $(M,D)$, we construct Poisson structure on the space of admissible functions on $(M,D)$ and a representation of the Poisson algebra to establish the prequantization condition of $(M,D)$ in terms of a Lie algebroid cohomology. Additional to this, we introduce a polarization for a Dirac manifold $M$ and discuss procedures for quantization in two cases where $M$ is compact and where $M$ is not compact.



قيم البحث

اقرأ أيضاً

We introduce a method of geometric quantization for compact $b$-symplectic manifolds in terms of the index of an Atiyah-Patodi-Singer (APS) boundary value problem. We show further that b-symplectic manifolds have canonical Spin-c structures in the us ual sense, and that the APS index above coincides with the index of the Spin-c Dirac operator. We show that if the manifold is endowed with a Hamiltonian action of a compact connected Lie group with non-zero modular weights, then this method satisfies the Guillemin-Sternberg ``quantization commutes with reduction property. In particular our quantization coincides with the formal quantization defined by Guillemin, Miranda and Weitsman, providing a positive answer to a question posed in their paper.
We construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the effect of hyperbolic singularities, which make an infinite-dimensional contribution to the quantization, thus showing that this quantization depends strongly on polarization.
492 - Tosiaki Kori 2014
We introduce a pre-symplectic structure on the space of connections in a G-principal bundle over a four-manifold and a Hamiltonian action on it of the group of gauge transformations that are trivial on the boundary. The moment map is given by the squ are of curvature so that the 0-level set is the space of flat connections. Thus the moduli space of flat connections is endowed with a pre-symplectic structure. In case when the four-manifold is null-cobordant we shall construct, on the moduli space of connections, as well as on that of flat connections, a hermitian line bundle with connection whose curvature is given by the pre-symplectic form. This is the Chern-Simons pre-quantum line bundle. The group of gauge transformations on the boundary of the base manifold acts on the moduli space of flat connections by an infinitesimally symplectic way. When the base manifold is a 4-dimensional disc we show that this action is lifted to the pre-quantum line bundle by its abelian extension. The geometric description of the latter is related to the 4-dimensional Wess-Zumino-Witten model. The previous version of this arxiv text had several incoincidence with the published article in the Differential Geometry and its Applications vol.29, so the author corrected them.
199 - Yuji Hirota 2010
This paper is devoted to the study of Morita equivalence for twisted Poisson manifolds. We review some Morita invariants and prove that integrable twisted Poisson manifolds which are gauge equivalent are Morita equivalent. Moreover, we introduce the notion of weak Morita equivalence and show that if two twisted Poisson manifolds are weak Morita equivalent, there exists a one-to-one correspondence between their twisted symplectic leaves.
This is an exposition of the Donaldson geometric flow on the space of symplectic forms on a closed smooth four-manifold, representing a fixed cohomology class. The original work appeared in [1].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا