ترغب بنشر مسار تعليمي؟ اضغط هنا

An Improved Solution for Restricted and Uncertain TRQ

68   0   0.0 ( 0 )
 نشر من قبل Zhijie Wang
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jack Wang




اسأل ChatGPT حول البحث

CSPTRQ is an interesting problem and its has attracted much attention. The CSPTRQ is a variant of the traditional PTRQ. As objects moving in a constrained-space are common, clearly, it can also find many applications. At the first sight, our problem can be easily tackled by extending existing methods used to answer the PTRQ. Unfortunately, those classical techniques are not well suitable for our problem, due to a set of new challenges. We develop targeted solutions and demonstrate the efficiency and effectiveness of the proposed methods through extensive experiments.



قيم البحث

اقرأ أيضاً

The explosion in the availability of GPS-enabled devices has resulted in an abundance of trajectory data. In reality, however, majority of these trajectories are collected at a low sampling rate and only provide partial observations on their actually traversed routes. Consequently, they are mired with uncertainty. In this paper, we develop a technique called InferTra to infer uncertain trajectories from network-constrained partial observations. Rather than predicting the most likely route, the inferred uncertain trajectory takes the form of an edge-weighted graph and summarizes all probable routes in a holistic manner. For trajectory inference, InferTra employs Gibbs sampling by learning a Network Mobility Model (NMM) from a database of historical trajectories. Extensive experiments on real trajectory databases show that the graph-based approach of InferTra is up to 50% more accurate, 20 times faster, and immensely more versatile than state-of-the-art techniques.
It is widely known that there is a lot of useful information hidden in big data, leading to a new saying that data is money. Thus, it is prevalent for individuals to mine crucial information for utilization in many real-world applications. In the pas t, studies have considered frequency. Unfortunately, doing so neglects other aspects, such as utility, interest, or risk. Thus, it is sensible to discover high-utility itemsets (HUIs) in transaction databases while utilizing not only the quantity but also the predefined utility. To find patterns that can represent the supporting transaction, a recent study was conducted to mine high utility-occupancy patterns whose contribution to the utility of the entire transaction is greater than a certain value. Moreover, in realistic applications, patterns may not exist in transactions but be connected to an existence probability. In this paper, a novel algorithm, called High-Utility-Occupancy Pattern Mining in Uncertain databases (UHUOPM), is proposed. The patterns found by the algorithm are called Potential High Utility Occupancy Patterns (PHUOPs). This algorithm divides user preferences into three factors, including support, probability, and utility occupancy. To reduce memory cost and time consumption and to prune the search space in the algorithm as mentioned above, probability-utility-occupancy list (PUO-list) and probability-frequency-utility table (PFU-table) are used, which assist in providing the downward closure property. Furthermore, an original tree structure, called support count tree (SC-tree), is constructed as the search space of the algorithm. Finally, substantial experiments were conducted to evaluate the performance of proposed UHUOPM algorithm on both real-life and synthetic datasets, particularly in terms of effectiveness and efficiency.
Knowledge graphs (KG) that model the relationships between entities as labeled edges (or facts) in a graph are mostly constructed using a suite of automated extractors, thereby inherently leading to uncertainty in the extracted facts. Modeling the un certainty as probabilistic confidence scores results in a probabilistic knowledge graph. Graph queries over such probabilistic KGs require answer computation along with the computation of those result probabilities, aka, probabilistic inference. We propose a system, HAPPI (How Provenance of Probabilistic Inference), to handle such query processing. Complying with the standard provenance semiring model, we propose a novel commutative semiring to symbolically compute the probability of the result of a query. These provenance-polynomiallike symbolic expressions encode fine-grained information about the probability computation process. We leverage this encoding to efficiently compute as well as maintain the probability of results as the underlying KG changes. Focusing on a popular class of conjunctive basic graph pattern queries on the KG, we compare the performance of HAPPI against a possible-world model of computation and a knowledge compilation tool over two large datasets. We also propose an adaptive system that leverages the strengths of both HAPPI and compilation based techniques. Since existing systems for probabilistic databases mostly focus on query computation, they default to re-computation when facts in the KG are updated. HAPPI, on the other hand, does not just perform probabilistic inference and maintain their provenance, but also provides a mechanism to incrementally maintain them as the KG changes. We extend this maintainability as part of our proposed adaptive system.
We develop a data-driven approach to the computation of a-posteriori feasibility certificates to the solution sets of variational inequalities affected by uncertainty. Specifically, we focus on instances of variational inequalities with a determinist ic mapping and an uncertain feasibility set, and represent uncertainty by means of scenarios. Building upon recent advances in the scenario approach literature, we quantify the robustness properties of the entire set of solutions of a variational inequality, with feasibility set constructed using the scenario approach, against a new unseen realization of the uncertainty. Our results extend existing results that typically impose an assumption that the solution set is a singleton and require certain non-degeneracy properties, and thereby offer probabilistic feasibility guarantees to any feasible solution. We show that assessing the violation probability of an entire set of solutions, rather than of a singleton, requires enumeration of the support constraints that shape this set. Additionally, we propose a general procedure to enumerate the support constraints that does not require a closed form description of the solution set, which is unlikely to be available. We show that robust game theory problems can be modelling via uncertain variational inequalities, and illustrate our theoretical results through extensive numerical simulations on a case study involving an electric vehicle charging coordination problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا