ترغب بنشر مسار تعليمي؟ اضغط هنا

Speech animation using electromagnetic articulography as motion capture data

207   0   0.0 ( 0 )
 نشر من قبل Slim Ouni
 تاريخ النشر 2013
والبحث باللغة English
 تأليف Ingmar Steiner




اسأل ChatGPT حول البحث

Electromagnetic articulography (EMA) captures the position and orientation of a number of markers, attached to the articulators, during speech. As such, it performs the same function for speech that conventional motion capture does for full-body movements acquired with optical modalities, a long-time staple technique of the animation industry. In this paper, EMA data is processed from a motion-capture perspective and applied to the visualization of an existing multimodal corpus of articulatory data, creating a kinematic 3D model of the tongue and teeth by adapting a conventional motion capture based animation paradigm. This is accomplished using off-the-shelf, open-source software. Such an animated model can then be easily integrated into multimedia applications as a digital asset, allowing the analysis of speech production in an intuitive and accessible manner. The processing of the EMA data, its co-registration with 3D data from vocal tract magnetic resonance imaging (MRI) and dental scans, and the modeling workflow are presented in detail, and several issues discussed.



قيم البحث

اقرأ أيضاً

350 - Ingmar Steiner 2012
The importance of modeling speech articulation for high-quality audiovisual (AV) speech synthesis is widely acknowledged. Nevertheless, while state-of-the-art, data-driven approaches to facial animation can make use of sophisticated motion capture te chniques, the animation of the intraoral articulators (viz. the tongue, jaw, and velum) typically makes use of simple rules or viseme morphing, in stark contrast to the otherwise high quality of facial modeling. Using appropriate speech production data could significantly improve the quality of articulatory animation for AV synthesis.
145 - Ingmar Steiner 2012
We present a modular framework for articulatory animation synthesis using speech motion capture data obtained with electromagnetic articulography (EMA). Adapting a skeletal animation approach, the articulatory motion data is applied to a three-dimens ional (3D) model of the vocal tract, creating a portable resource that can be integrated in an audiovisual (AV) speech synthesis platform to provide realistic animation of the tongue and teeth for a virtual character. The framework also provides an interface to articulatory animation synthesis, as well as an example application to illustrate its use with a 3D game engine. We rely on cross-platform, open-source software and open standards to provide a lightweight, accessible, and portable workflow.
Speech-driven facial animation involves using a speech signal to generate realistic videos of talking faces. Recent deep learning approaches to facial synthesis rely on extracting low-dimensional representations and concatenating them, followed by a decoding step of the concatenated vector. This accounts for only first-order interactions of the features and ignores higher-order interactions. In this paper we propose a polynomial fusion layer that models the joint representation of the encodings by a higher-order polynomial, with the parameters modelled by a tensor decomposition. We demonstrate the suitability of this approach through experiments on generated videos evaluated on a range of metrics on video quality, audiovisual synchronisation and generation of blinks.
This paper presents a generic method for generating full facial 3D animation from speech. Existing approaches to audio-driven facial animation exhibit uncanny or static upper face animation, fail to produce accurate and plausible co-articulation or r ely on person-specific models that limit their scalability. To improve upon existing models, we propose a generic audio-driven facial animation approach that achieves highly realistic motion synthesis results for the entire face. At the core of our approach is a categorical latent space for facial animation that disentangles audio-correlated and audio-uncorrelated information based on a novel cross-modality loss. Our approach ensures highly accurate lip motion, while also synthesizing plausible animation of the parts of the face that are uncorrelated to the audio signal, such as eye blinks and eye brow motion. We demonstrate that our approach outperforms several baselines and obtains state-of-the-art quality both qualitatively and quantitatively. A perceptual user study demonstrates that our approach is deemed more realistic than the current state-of-the-art in over 75% of cases. We recommend watching the supplemental video before reading the paper: https://research.fb.com/wp-content/uploads/2021/04/mesh_talk.mp4
We propose novel motion representations for animating articulated objects consisting of distinct parts. In a completely unsupervised manner, our method identifies object parts, tracks them in a driving video, and infers their motions by considering t heir principal axes. In contrast to the previous keypoint-based works, our method extracts meaningful and consistent regions, describing locations, shape, and pose. The regions correspond to semantically relevant and distinct object parts, that are more easily detected in frames of the driving video. To force decoupling of foreground from background, we model non-object related global motion with an additional affine transformation. To facilitate animation and prevent the leakage of the shape of the driving object, we disentangle shape and pose of objects in the region space. Our model can animate a variety of objects, surpassing previous methods by a large margin on existing benchmarks. We present a challenging new benchmark with high-resolution videos and show that the improvement is particularly pronounced when articulated objects are considered, reaching 96.6% user preference vs. the state of the art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا