ترغب بنشر مسار تعليمي؟ اضغط هنا

Creation and protection of entanglement in systems out of thermal equilibrium

69   0   0.0 ( 0 )
 نشر من قبل Bruno Bellomo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract

قيم البحث

اقرأ أيضاً

We discuss how the thermalization of an elementary quantum system is modified when the system is placed in an environment out of thermal equilibrium. To this aim we provide a detailed investigation of the dynamics of an atomic system placed close to a body of arbitrary geometry and dielectric permittivity, whose temperature $T_M$ is different from that of the surrounding walls $T_W$. A suitable master equation for the general case of an $N$-level atom is first derived and then specialized to the cases of a two- and three-level atom. Transition rates and steady states are explicitly expressed as a function of the scattering matrices of the body and become both qualitatively and quantitatively different from the case of radiation at thermal equilibrium. Out of equilibrium, the system steady state depends on the system-body distance, on the geometry of the body and on the interplay of all such parameters with the body optical resonances. While a two-level atom tends toward a thermal state, this is not the case already in the presence of three atomic levels. This peculiar behavior can be exploited, for example, to invert the populations ordering and to provide an efficient cooling mechanism for the internal state of the quantum system. We finally provide numerical studies and asymptotic expressions when the body is a slab of finite thickness. Our predictions can be relevant for a wide class of experimental configurations out of thermal equilibrium involving different physical realizations of two or three-level systems.
Atom counting theory can be used to study the role of thermal noise in quantum phase transitions and to monitor the dynamics of a quantum system. We illustrate this for a strongly correlated fermionic system, which is equivalent to an anisotropic qua ntum XY chain in a transverse field, and can be realized with cold fermionic atoms in an optical lattice. We analyze the counting statistics across the phase diagram in the presence of thermal fluctuations, and during its thermalization when the system is coupled to a heat bath. At zero temperature, the quantum phase transition is reflected in the cumulants of the counting distribution. We find that the signatures of the crossover remain visible at low temperature and are obscured with increasing thermal fluctuations. We find that the same quantities may be used to scan the dynamics during the thermalization of the system.
We investigate creation, manipulation, and steering of entanglement in spin chains from the viewpoint of quantum communication between distant parties. We demonstrate how global parametric driving of the spin-spin coupling and/or local time-dependent Zeeman fields produce a large amount of entanglement between the first and the last spin of the chain. This occurs whenever the driving frequency meets a resonance condition, identified as entanglement resonance. Our approach marks a promising step towards an efficient quantum state transfer or teleportation in solid state system. Following the reasoning of Zueco et al. [1], we propose generation and routing of multipartite entangled states by use of symmetric tree-like structures of spin chains. Furthermore, we study the effect of decoherence on the resulting spin entanglement between the corresponding terminal spins.
115 - O. Osenda , , G.A. Raggio 2005
We revisist the issue of entanglement of thermal equilibrium states in composite quantum systems. The possible scenarios are exemplified in bipartite qubit/qubit and qubit/qutrit systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا