ﻻ يوجد ملخص باللغة العربية
Power spectra of global surface temperature (GST) records reveal major periodicities at about 9.1, 10-11, 19-22 and 59-62 years. The Coupled Model Intercomparison Project 5 (CMIP5) general circulation models (GCMs), to be used in the IPCC (2013), are analyzed and found not able to reconstruct this variability. From 2000 to 2013.5 a GST plateau is observed while the GCMs predicted a warming rate of about 2 K/century. In contrast, the hypothesis that the climate is regulated by specific natural oscillations more accurately fits the GST records at multiple time scales. The climate sensitivity to CO2 doubling should be reduced by half, e.g. from the IPCC-2007 2.0-4.5 K range to 1.0-2.3 K with 1.5 C median. Also modern paleoclimatic temperature reconstructions yield the same conclusion. The observed natural oscillations could be driven by astronomical forcings. Herein I propose a semi empirical climate model made of six specific astronomical oscillations as constructors of the natural climate variability spanning from the decadal to the millennial scales plus a 50% attenuated radiative warming component deduced from the GCM mean simulation as a measure of the anthropogenic and volcano contributions to climatic changes. The semi empirical model reconstructs the 1850-2013 GST patterns significantly better than any CMIP5 GCM simulation. The model projects a possible 2000-2100 average warming ranging from about 0.3 C to 1.8 C that is significantly below the original CMIP5 GCM ensemble mean range (1 K to 4 K).
This article discussesl a few of the problems that arise in geophysical fluid dynamics and climate that are associated with the presence of moisture in the air, its condensation and release of latent heat. Our main focus is Earths atmosphere but we a
During the last few years a number of works have proposed that planetary harmonics regulate solar oscillations and the Earth climate. Herein I address some critiques. Detailed analysis of the data do support the planetary theory of solar and climate
Climate models are complicated software systems that approximate atmospheric and oceanic fluid mechanics at a coarse spatial resolution. Typical climate forecasts only explicitly resolve processes larger than 100 km and approximate any process occurr
Tipping elements in the climate system are large-scale subregions of the Earth that might possess threshold behavior under global warming with large potential impacts on human societies. Here, we study a subset of five tipping elements and their inte
Any type of non-buoyant material in the ocean is transported horizontally by currents during its sinking journey. This lateral transport can be far from negligible for small sinking velocities. To estimate its magnitude and direction, the material is