ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a new kind of explosive X-ray transient near M86

107   0   0.0 ( 0 )
 نشر من قبل Peter Jonker
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery of a new type of explosive X-ray flash in Chandra images of the old elliptical galaxy M86. This unique event is characterised by the peak luminosity of 6x10^42 erg/s for the distance of M86, the presence of precursor events, the timescale between the precursors and the main event (~4,000 s), the absence of detectable hard X-ray and gamma-ray emission, the total duration of the event and the detection of a faint associated optical signal. The transient is located close to M86 in the Virgo cluster at the location where gas and stars are seen protruding from the galaxy probably due to an ongoing wet minor merger. We discuss the possible mechanisms for the transient and we conclude that the X-ray flash could have been caused by the disruption of a compact white dwarf star by a ~10^4 Msun black hole. Alternative scenarios such that of a foreground neutron star accreting an asteroid or the detection of an off-axis (short) gamma-ray burst cannot be excluded at present.



قيم البحث

اقرأ أيضاً

We report the discovery of the transient ultraluminous X-ray source (ULX) CXOU J122602.3+125951 (hereafter M86 tULX-1), located 352 (19 kpc) northwest of the centre of the giant elliptical galaxy M86 (NGC 4406) in the Virgo Cluster. The spectrum of M 86 tULX-1 can be fit by a power-law plus multicolour-disc model with a 1.0 [+0.8 -2.6] index and an 0.66 [+0.17 -0.11] keV inner-disc temperature, or by a power law with a 1.86 +/- 0.10 index. For an isotropically emitting source at the distance of M86, the luminosity based on the superposition of spectral models is (5 +/- 1) x 10^39 erg/s. Its relatively hard spectrum places M86 tULX-1 in a hitherto unpopulated region in the luminosity-disc temperature diagram, between other ULXs and the (sub-Eddington) black-hole X-ray binaries. We discovered M86 tULX-1 in an archival 148-ks 2013 July Chandra observation, and it was not detected in a 20-ks 2016 May Chandra observation, meaning it faded by a factor of at least 30 in three years. Based on our analysis of deep optical imaging of M86, it is probably not located in a globular cluster. It is the brightest ULX found in an old field environment unaffected by recent galaxy interaction. We conclude that M86 tULX-1 may be a stellar-mass black hole of ~30 - 100 M_Sun with a low-mass giant companion, or a transitional object in a state between the normal stellar-mass black holes and the ultraluminous state.
We describe the discovery of a new kind of radio transient, which we call early-riser bursts or ERBs. We found this new class of source by considering traditional radio searches, but extending into the complex plane of dispersion measure. ERBs have t he remarkable property of appearing before they are searched for. We provide suggestions for the most likely origin of this new astronomical phenomenon.
We report on the detection and follow-up multi-wavelength observations of the new X-ray transient MAXI J1807+132 with the MAXI/GSC, Swift, and ground-based optical telescopes. The source was first recognized with the MAXI/GSC on 2017 March 13. About a week later, it reached the maximum intensity ($sim$10 mCrab in 2-10 keV), and then gradually faded in $sim$10 days by more than one order of magnitude. Time-averaged Swift/XRT spectra in the decaying phase can be described by a blackbody with a relatively low temperature (0.1-0.5 keV), plus a hard power-law component with a photon index of $sim$2. These spectral properties are similar to those of neutron star low-mass X-ray binaries (LMXBs) in their dim periods. The blackbody temperature and the radius of the emission region varied in a complex manner as the source became dimmer. The source was detected in the optical wavelength on March 27-31 as well. The optical flux decreased monotonically as the X-ray flux decayed. The correlation between the X-ray and optical fluxes is found to be consistent with those of known neutron star LMXBs, supporting the idea that the source is likely to be a transient neutron star LMXB.
We report the serendipitous discovery of a transient X-ray source, Suzaku J1305$-$4930, $sim$3 kpc southwest of the nucleus of the Seyfert 2 galaxy NGC 4945. Among the seven Suzaku observations of NGC 4945 from 2005 to 2011, Suzaku J1305$-$4930 was d etected four times in July and August in 2010. The X-ray spectra are better approximated with a multi-color disk model than a power-law model. At the first detection on 2010 July 4--5, its X-ray luminosity was $(8.9^{+0.2}_{-0.4}) times 10^{38}$ erg s$^{-1}$ and the temperature at the inner-disk radius ($kT_{rm in}$) was $1.12pm0.04$ keV. At the last detection with Suzaku on 2010 August 4--5, the luminosity decreased to $(2.2^{+0.3}_{-0.8}) times10^{38}$ erg s$^{-1}$ and $kT_{rm in}$ was $0.62pm0.07$ keV. The source was not detected on 2011 January 29, about six months after the first detection, with a luminosity upper limit of $2.4times10^{38}$ erg s$^{-1}$. We also find an absorption feature which is similar to that reported in Cyg X-1. Assuming the standard disk, we suggest that Suzaku J1305$-$4930 consists of a black hole with a mass of $sim$10 $M_{odot}$. The relation between the disk luminosity and $kT_{rm in}$ is not reproduced with the standard model of a constant inner radius but is better approximated with a slim-disk model.
We report the first half-year monitoring of the new Galactic black hole candidate MAXI J1348-630, discovered on 2019 January 26 with the Gas Slit Camera (GSC) on-board MAXI. During the monitoring period, the source exhibited two outburst peaks, where the first peak flux (at T=14 day from the discovery of T =0) was ~4 Crab (2-20 keV) and the second one (at T =132 day) was ~0.4 Crab (2-20 keV). The source exhibited distinct spectral transitions between the high/soft and low/hard states and an apparent q-shape curve on the hardness-intensity diagram, both of which are well-known characteristics of black hole binaries. Compared to other bright black hole transients, MAXI J1348-630 is characterized by its low disk-temperature (~0.75 keV at the maximum) and high peak flux in the high/soft state. The low peak-temperature leads to a large innermost radius that is identified as the Innermost Stable Circular Orbit (ISCO), determined by the black hole mass and spin. Assuming the empirical relation between the soft-to-hard transition luminosity (Ltrans) and the Eddington luminosity (LEdd), Ltrans/LEdd ~ 0.02, and a face-on disk around a non-spinning black hole, the source distance and the black hole mass are estimated to be D ~ 4 kpc and ~7 (D/4 kpc) Mo, respectively. The black hole is more massive if the disk is inclined and the black hole is spinning. These results suggest that MAXI J1348-630 may host a relatively massive black hole among the known black hole binaries in our Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا