ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple spiral patterns in the transitional disk of HD 100546

131   0   0.0 ( 0 )
 نشر من قبل Anthony Boccaletti
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Protoplanetary disks around young stars harbor many structures related to planetary formation. Of particular interest, spiral patterns were discovered among several of these disks and are expected to be the sign of gravitational instabilities leading to giant planets formation or gravitational perturbations caused by already existing planets. In this context, the star HD100546 presents some specific characteristics with a complex gas and dusty disk including spirals as well as a possible planet in formation. The objective of this study is to analyze high contrast and high angular resolution images of this emblematic system to shed light on critical steps of the planet formation. We retrieved archival images obtained at Gemini in the near IR (Ks band) with the instrument NICI and processed the data using advanced high contrast imaging technique taking advantage of the angular differential imaging. These new images reveal the spiral pattern previously identified with HST with an unprecedented resolution, while the large-scale structure of the disk is mostly erased by the data processing. The single pattern at the southeast in HST images is now resolved into a multi-armed spiral pattern. Using two models of a gravitational perturber orbiting in a gaseous disk we attempted to bring constraints on the characteristics of this perturber assuming each spiral being independent and we derived qualitative conclusions. The non-detection of the northeast spiral pattern observed in HST allows to put a lower limit on the intensity ratio between the two sides of the disk, which if interpreted as forward scattering yields a larger anisotropic scattering than derived in the visible. Also, we found that the spirals are likely spatially resolved with a thickness of about 5-10AU. Finally, we did not detect the candidate forming planet recently discovered in the Lp band, with a mass upper limit of 16-18 MJ.



قيم البحث

اقرأ أيضاً

We present optical and near-infrared high contrast images of the transitional disk HD 100546 taken with the Magellan Adaptive Optics system (MagAO) and the Gemini Planet Imager (GPI). GPI data include both polarized intensity and total intensity imag ery, and MagAO data are taken in Simultaneous Differential Imaging mode at H{alpha}. The new GPI H -band total intensity data represent a significant enhancement in sensitivity and field rotation compared to previous data sets and enable a detailed exploration of substructure in the disk. The data are processed with a variety of differential imaging techniques (polarized, angular, reference, and simultaneous differential imaging) in an attempt to identify the disk structures that are most consistent across wavelengths, processing techniques, and algorithmic parameters. The inner disk cavity at 15 au is clearly resolved in multiple datasets, as are a variety of spiral features. While the cavity and spiral structures are identified at levels significantly distinct from the neighboring regions of the disk under several algorithms and with a range of algorithmic parameters, emission at the location of HD 100546 c varies from point-like under aggressive algorithmic parameters to a smooth continuous structure with conservative parameters, and is consistent with disk emission. Features identified in the HD100546 disk bear qualitative similarity to computational models of a moderately inclined two-armed spiral disk, where projection effects and wrapping of the spiral arms around the star result in a number of truncated spiral features in forward-modeled images.
249 - Catherine Walsh 2014
HD 100546 is a well-studied Herbig Be star-disk system that likely hosts a close-in companion with compelling observational evidence for an embedded protoplanet at 68 AU. We present ALMA observations of the HD 100546 disk which resolve the gas and du st structure at (sub)mm wavelengths. The CO emission (at 345.795 GHz) originates from an extensive molecular disk (390+/-20 AU in radius) whereas the continuum emission is more compact (230+/-20 AU in radius) suggesting radial drift of the mm-sized grains. The CO emission is similar in extent to scattered light images indicating well-mixed gas and um-sized grains in the disk atmosphere. Assuming azimuthal symmetry, a single-component power-law model cannot reproduce the continuum visibilities. The visibilities and images are better reproduced by a double-component model: a compact ring with a width of 21 AU centered at 26 AU and an outer ring with a width of 75+/-3 AU centered at 190+/-3 AU. The influence of a companion and protoplanet on the dust evolution is investigated. The companion at 10 AU facilitates the accumulation of mm-sized grains within a compact ring, ~ 20 - 30 AU, by ~ 10 Myr. The injection of a protoplanet at 1 Myr hastens the ring formation (~ 1.2 Myr) and also triggers the development of an outer ring (~ 100 - 200 AU). These observations provide additional evidence for the presence of a close-in companion and hint at dynamical clearing by a protoplanet in the outer disk.
We report the detection of a faint pointlike feature possibly related to ongoing planet-formation in the disk of the transition disk star HD 169142. The pointlike feature has a $Delta$mag(L)$sim$6.4, at a separation of $sim$0.11 and PA$sim$0$^{circ}$ . Given its lack of an H or K$_{S}$ counterpart despite its relative brightness, this candidate cannot be explained by purely photospheric emission and must be a disk feature heated by an as yet unknown source. Its extremely red colors make it highly unlikely to be a background object, but future multi-wavelength followup is necessary for confirmation and characterization of this feature.
Shadows in scattered light images of protoplanetary disks are a common feature and support the presence of warps or misalignments between disk regions. These warps are possibly due to an inclined (sub-)stellar companion embedded in the disk. We study the morphology of the protoplanetary disk around the Herbig Ae star HD 139614 based on the first scattered light observations of this disk, which we model with the radiative transfer code MCMax3D. We obtained J- and H-band observations in polarized scattered light with VLT/SPHERE that show strong azimuthal asymmetries. In the outer disk, beyond ~30 au, a broad shadow spans a range of ~240{deg} in position angle, in the East. A bright ring at ~16 au also shows an azimuthally asymmetric brightness, with the faintest side roughly coincidental with the brightest region of the outer disk. Additionally, two arcs are detected at ~34 au and ~50 au. We created a simple 4-zone approximation to a warped disk model of HD 139614 in order to qualitatively reproduce these features. The location and misalignment of the disk components were constrained from the shape and location of the shadows they cast. We find that the shadow on the outer disk covers a range of position angle too wide to be explained by a single inner misaligned component. Our model requires a minimum of two separate misaligned zones -- or a continuously warped region -- to cast this broad shadow on the outer disk. A small misalignment of ~4{deg} between adjacent components can reproduce most of the observed shadow features. Multiple misaligned disk zones, potentially mimicing a warp, can explain the observed broad shadows in the HD 139614 disk. A planetary mass companion in the disk, located on an inclined orbit, could be responsible for such a feature and for the dust depleted gap responsible for a dip in the SED.
67 - M. Honda , T. Kudo , S. Takatsuki 2016
We made near infrared multicolor imaging observations of a disk around Herbig Be star HD100546 using Gemini/NICI. K (2.2,$mu$m), H$_2$O ice (3.06,$mu$m), and L(3.8,$mu$m) disk images were obtained and we found the 3.1,$mu$m absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on cite{Oka2012} including water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by the both disk models with/without photodesorption effect within the measurement accuracy, but slightly favors the model with photodesorption effects, implying that the UV photons play an important role on the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement on the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا