ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge order and possible bias-induced metastable state in the organic conductor beta-(meso-DMBEDT-TTF)2PF6: effects of structural distortion

159   0   0.0 ( 0 )
 نشر من قبل Yasuhiro Tanaka
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically investigate charge order and nonlinear conduction in a quasi-two-dimensional organic conductor beta-(meso-DMBEDT-TTF)2PF6 [DMBEDT-TTF=dimethylbis(ethylenedithio)tetrathiafulvalene]. Within the Hartree-Fock approximation, we study effects of structural distortion on the experimentally observed checkerboard charge order and its bias-induced melting by using an extended Hubbard model with Peierls- and Holstein-types of electron-lattice interactions. The structural distortion is important in realizing the charge order. The current-voltage characteristics obtained by a nonequilibrium Greens function method indicate that a charge-ordered insulating state changes into a conductive state. Although the charge order and lattice distortions are largely suppressed at a threshold voltage, they remain finite even in the conductive state. We discuss the relevance of the results to experimental observations, especially to a possible bias-induced metastable state.

قيم البحث

اقرأ أيضاً

The effects of electron correlation in the quasi-two-dimensional organic conductor alpha-(BEDT-TTF)2I3 are investigated theoretically by using an extended Hubbard model with on-site and nearest-neighbor Coulomb interactions. A variational Monte Carlo method is applied to study its ground-state properties. We show that there appears a nonmagnetic horizontal-stripe charge order in which nearest-neighbor correlation functions indicate a tendency toward a spin-singlet formation on the bonds with large transfer integrals along the charge-rich stripe. Under uniaxial pressure, a first-order transition from the nonmagnetic charge order to a zero-gap state occurs. Our results on a spin correlation length in the charge-ordered state suggest that a spin gap is almost unaffected by the uniaxial pressure in spite of the suppression of the charge disproportionation. The relevance of these contrasting behaviors in spin and charge degrees of freedom to recent experimental observations is discussed.
The low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 salt is known for its surprising angular dependent magnetoresistance (ADMR), which has been studied intensively in the last decade. However, the nature of the LTP has not been understood until now. Here we analyse theoretically ADMR in unconventional (or nodal) charge density wave (UCDW). In magnetic field the quasiparticle spectrum in UCDW is quantized, which gives rise to spectacular ADMR. The present model accounts for many striking features of ADMR data in alpha-(BEDT-TTF)_2KHg(SCN)_4.
The electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant discrepancies to band theory. We demonstrate that the measur ed dispersions can be consistently mapped onto the one-dimensional Hubbard model at finite doping. This interpretation is further supported by a remarkable transfer of spectral weight as function of temperature. The ARPES data thus show spectroscopic signatures of spin-charge separation on an energy scale of the conduction band width.
We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal s ignificant quantitative and qualitative discrepancies to band theory. We demonstrate that the dispersive behavior as well as the temperature-dependence of the spectra can be consistently explained by the finite-energy physics of the one-dimensional Hubbard model at metallic doping. The model description can even be made quantitative, if one accounts for an enhanced hopping integral at the surface, most likely caused by a relaxation of the topmost molecular layer. Within this interpretation the ARPES data provide spectroscopic evidence for the existence of spin-charge separation on an energy scale of the conduction band width. The failure of the one-dimensional Hubbard model for the {it low-energy} spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction.
Dynamical localization, i.e., reduction of the intersite electronic transfer integral t by an alternating electric field, E(omega) , is a promising strategy for controlling strongly correlated systems with a competing energy balance between t and the Coulomb repulsion energy. Here we describe a charge localization induced by the 9.3 MV/cm instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor alpha-(bis[ethylenedithio]-tetrathiafulvelene)_2I_3. A large reflectivity change of > 25% and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the 10% reduction of t driven by the strong, high-frequency (omega>t/h_bar) electric field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا