ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak lensing analysis of SZ-selected clusters of galaxies from the SPT and Planck surveys

486   0   0.0 ( 0 )
 نشر من قبل Daniel Gruen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the weak lensing analysis of the Wide-Field Imager SZ Cluster of galaxy (WISCy) sample, a set of 12 clusters of galaxies selected for their Sunyaev-Zeldovich (SZ) effect. After developing new and improved methods for background selection and determination of geometric lensing scaling factors from absolute multi-band photometry in cluster fields, we compare the weak lensing mass estimate with public X-ray and SZ data. We find consistency with hydrostatic X-ray masses with no significant bias, no mass dependent bias and less than 20% intrinsic scatter and constrain fgas,500c=0.128+0.029-0.023. We independently calibrate the South Pole Telescope significance-mass relation and find consistency with previous results. The comparison of weak lensing mass and Planck Compton parameters, whether extracted self-consistently with a mass-observable relation (MOR) or using X-ray prior information on cluster size, shows significant discrepancies. The deviations from the MOR strongly correlate with cluster mass and redshift. This could be explained either by a significantly shallower than expected slope of Compton decrement versus mass and a corresponding problem in the previous X-ray based mass calibration, or a size or redshift dependent bias in SZ signal extraction.

قيم البحث

اقرأ أيضاً

We present weak lensing (WL) mass constraints for a sample of massive galaxy clusters detected by the South Pole Telescope (SPT) via the Sunyaev-Zeldovich effect (SZE). We use $griz$ imaging data obtained from the Science Verification (SV) phase of t he Dark Energy Survey (DES) to fit the WL shear signal of 33 clusters in the redshift range $0.25 le z le 0.8$ with NFW profiles and to constrain a four-parameter SPT mass-observable relation. To account for biases in WL masses, we introduce a WL mass to true mass scaling relation described by a mean bias and an intrinsic, log-normal scatter. We allow for correlated scatter within the WL and SZE mass-observable relations and use simulations to constrain priors on nuisance parameters related to bias and scatter from WL. We constrain the normalization of the $zeta-M_{500}$ relation, $A_mathrm{SZ}=12.0_{-6.7}^{+2.6}$ when using a prior on the mass slope $B_mathrm{SZ}$ from the latest SPT cluster cosmology analysis. Without this prior, we recover $A_mathrm{SZ}=10.8_{-5.2}^{+2.3}$ and $B_mathrm{SZ}=1.30_{-0.44}^{+0.22}$. Results in both cases imply lower cluster masses than measured in previous work with and without WL, although the uncertainties are large. The WL derived value of $B_mathrm{SZ}$ is $approx 20%$ lower than the value preferred by the most recent SPT cluster cosmology analysis. The method demonstrated in this work is designed to constrain cluster masses and cosmological parameters simultaneously and will form the basis for subsequent studies that employ the full SPT cluster sample together with the DES data.
Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based we ak lensing observations of 19 South Pole Telescope (SPT) selected clusters at redshifts $0.29 leq z leq 0.61$ and combine them with previously reported space-based observations of 13 galaxy clusters at redshifts $0.576 leq z leq 1.132$ to constrain the cluster mass scaling relations with the Sunyaev-Zeldovich effect (SZE), the cluster gas mass mgas, and yx, the product of mgas and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 5.6% in cluster mass (68% confidence). Our constraints on the mass--X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass--SZE scaling relation are consistent with the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.
We perform a cross validation of the cluster catalog selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev-Zeldovich effect (SZE) selecte d cluster catalog from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness $hatlambda>40$ in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness--mass relation using a Bayesian cluster population model. We find a mass trend $lambdapropto M^{B}$ consistent with a linear relation ($Bsim1$), no significant redshift evolution and an intrinsic scatter in richness of $sigma_{lambda} = 0.22pm0.06$. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness $hat lambda=40$, this population makes up $>$12$%$ (97.5 percentile) of the total population. Extrapolating this to a measured richness $hat lambda=20$ yields $>$22$%$ (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends ($Bsim0.75$) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low mass contaminants are galaxy groups with masses $sim3$-$5times 10^{13} $ M$_odot$ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA.
We present a detection of the splashback feature around galaxy clusters selected using their Sunyaev-Zeldovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, $r_{rm sp}$, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that $r_{rm sp}$ inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these clusters with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases than optically selected clusters. We find that the measured $r_{rm sp}$ for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters, $r_{rm sp}$ is $sim$ $2sigma$ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogs and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy color, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster.
The possibly unbiased selection process in surveys of the Sunyaev Zeldovich effect can unveil new populations of galaxy clusters. We performed a weak lensing analysis of the PSZ2LenS sample, i.e. the PSZ2 galaxy clusters detected by the Planck missio n in the sky portion covered by the lensing surveys CFHTLenS and RCSLenS. PSZ2LenS consists of 35 clusters and it is a statistically complete and homogeneous subsample of the PSZ2 catalogue. The Planck selected clusters appear to be unbiased tracers of the massive end of the cosmological haloes. The mass concentration relation of the sample is in excellent agreement with predictions from the Lambda cold dark matter model. The stacked lensing signal is detected at 14 sigma significance over the radial range 0.1<R<3.2 Mpc/h, and is well described by the cuspy dark halo models predicted by numerical simulations. We confirmed that Planck estimated masses are biased low by b_SZ= 27+-11(stat)+-8(sys) per cent with respect to weak lensing masses. The bias is higher for the cosmological subsample, b_SZ= 40+-14+-(stat)+-8(sys) per cent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا