ﻻ يوجد ملخص باللغة العربية
We report on VERITAS observations of the BL Lac object B2 1215+30 between 2008 and 2012. During this period, the source was detected at very high energies (VHE; E > 100 GeV) by VERITAS with a significance of $8.9sigma$ and showed clear variability on time scales larger than months. In 2011, the source was found to be in a relatively bright state and a power-law fit to the differential photon spectrum yields a spectral index of $3.6 pm 0.4_{mathrm{stat}} pm 0.3_{mathrm{syst}}$ with an integral flux above 200 GeV of $(8.0 pm 0.9_{mathrm{stat}} pm 3.2_{mathrm{syst}}) times 10^{-12}, mathrm{cm}^{-2} mathrm{s}^{-1}$. No short term variability could be detected during the bright state in 2011. Multi-wavelength data were obtained contemporaneous with the VERITAS observations in 2011 and cover optical (Super-LOTIS, MDM, Swift-UVOT), X-ray (Swift-XRT), and gamma-ray (Fermi-LAT) frequencies. These were used to construct the spectral energy distribution (SED) of B2 1215+30. A one-zone leptonic model is used to model the blazar emission and the results are compared to those of MAGIC from early 2011 and other VERITAS-detected blazars. The SED can be well reproduced with model parameters typical for VHE-detected BL Lacs.
B2 1215+30 is a BL Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes, and subsequently confirmed by the VERITAS observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS de
The gamma-ray binary HESS J0632+057 has been observed at very-high energies (E $>$ 100 GeV) for more than ten years by the major systems of imaging atmospheric Cherenkov telescopes. We present a summary of results obtained with the H.E.S.S., MAGIC, a
The Fermi space telescope has detected over 100 pulsars. These discoveries have ushered in a new era of pulsar astrophysics at gamma-ray energies. Gamma-ray pulsars, regardless of whether they are young, old, radio-quiet etc, all exhibit a seemingly
Supernova remnants (SNRs) are widely considered the most likely source of cosmic rays below the knee ($10^{15}$ eV). Studies of GeV and TeV gamma-ray emission in the vicinity of SNRs, in combination with multi-wavelength observations, can trace and c
Blazars are known for their variability on a wide range of timescales at all wavelengths. Most studies of TeV gamma-ray blazars focus on short timescales, especially during flares. With a decade of observations from the Fermi-LAT and VERITAS, we pres