ﻻ يوجد ملخص باللغة العربية
Recent discoveries of weak and fast optical transients raise the question of their origin. We investigate the minimum ejecta mass associated with core-collapse supernovae (SNe) of Type Ic. We show that mass transfer from a helium star to a compact companion can produce an ultra-stripped core which undergoes iron core collapse and leads to an extremely fast and faint SN Ic. In this Letter, a detailed example is presented in which the pre-SN stellar mass is barely above the Chandrasekhar limit, resulting in the ejection of only ~0.05-0.20 M_sun of material and the formation of a low-mass neutron star. We compute synthetic light curves of this case and demonstrate that SN 2005ek could be explained by our model. We estimate that the fraction of such ultra-stripped to all SNe could be as high as 0.001-0.01. Finally, we argue that the second explosion in some double neutron star systems (for example, the double pulsar PSR J0737-3039B) was likely associated with an ultra-stripped SN Ic.
We study explosion characteristics of ultra-stripped supernovae (SNe), which are candidates of SNe generating binary neutron stars (NSs). As a first step, we perform stellar evolutionary simulations of bare carbon-oxygen cores of mass from 1.45 to 2.
We investigate the explosive nucleosynthesis during two dimensional neutrino-driven explosion of ultra-stripped Type Ic supernovae evolved from 1.45 and 1.5 M$_odot$ CO stars. These supernovae explode with the explosion energy of $sim 10^{50}$ erg an
Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the
Type Ic supernovae represent the explosions of the most stripped massive stars, but their progenitors and explosion mechanisms remain unclear. Larger samples of observed supernovae can help characterize the population of these transients. We present
Core-collapse supernovae (SNe), marking the deaths of massive stars, are among the most powerful explosions in the Universe, responsible, e.g., for a predominant synthesis of chemical elements in their host galaxies. The majority of massive stars are