ترغب بنشر مسار تعليمي؟ اضغط هنا

Acylindrical hyperbolicity of groups acting on trees

181   0   0.0 ( 0 )
 نشر من قبل Ashot Minasyan
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide new examples of acylindrically hyperbolic groups arising from actions on simplicial trees. In particular, we consider amalgamated products and HNN-extensions, 1-relator groups, automorphism groups of polynomial algebras, 3-manifold groups and graph products. Acylindrical hyperbolicity is then used to obtain some results about the algebraic structure, analytic properties and measure equivalence rigidity of groups from these classes.



قيم البحث

اقرأ أيضاً

In this paper, the notion of proper proximality (introduced in [BIP18]) is studied for various families of groups that act on trees. We show that if a group acts non-elementarily by isometries on a tree such that for any two edges, the intersection o f their edge stabilizers is finite, then G is properly proximal. We then provide a complete classification result for proper proximality among graph products of non-trivial groups, generalizing recent work of Duchesne, Tucker-Drob and Wesolek classifying inner amenability for graph products. As a consequence of the above result we obtain the absence of Cartan subalgebras and Cartan-rigidity in properly proximal graph products of weakly amenable groups with Cowling-Haagerup constant 1.
201 - Carolyn R. Abbott 2015
The class of acylindrically hyperbolic groups, which are groups that admit a certain type of non-elementary action on a hyperbolic space, contains many interesting groups such as non-exceptional mapping class groups and $operatorname{Out}(mathbb F_n) $ for $ngeq 2$. In such a group, a generalized loxodromic element is one that is loxodromic for some acylindrical action of the group on a hyperbolic space. Osin asks whether every finitely generated group has an acylindrical action on a hyperbolic space for which all generalized loxodromic elements are loxodromic. We answer this question in the negative, using Dunwoodys example of an inaccessible group as a counterexample.
We consider two manifestations of non-positive curvature: acylindrical actions on hyperbolic spaces and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for studying ma ny important families of groups, including mapping class groups, right-angled Coxeter and Artin groups, most 3-manifold groups, and many others. A group that admits an acylindrical action on a hyperbolic space may admit many such actions on different hyperbolic spaces, so it is natural to search for a best one. The set of all cobounded acylindrical actions on hyperbolic spaces admits a natural poset structure; in this paper we prove that all hierarchically hyperbolic groups admit a unique action which is the largest in this poset. The action we construct is also universal in the sense that every element which acts loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special cases of this result are themselves new and interesting. For instance, this is the first proof that right-angled Coxeter groups admit universal acylindrical actions. The notion of quasigeodesic stability of subgroups provides a natural analogue of quasiconvexity outside the context of hyperbolic groups. We provide a complete classification of stable subgroups of hierarchically hyperbolic groups, generalizing and extending results that are known for mapping class groups and right-angled Artin groups. We also provide a characterization of contracting quasigeodesics; interestingly, in this generality the proof is much simpler than in the special cases where it was already known. In the appendix, it is verified that any space satisfying the a priori weaker property of being an almost hierarchically hyperbolic space is actually a hierarchically hyperbolic space. The results of the appendix are used to streamline the proofs in the main text.
We discuss a problem posed by Gersten: Is every automatic group which does not contain Z+Z subgroup, hyperbolic? To study this question, we define the notion of n-tracks of length n, which is a structure like Z+Z, and prove its existence in the non-h yperbolic automatic groups with mild conditions. As an application, we show that if a group acts effectively, cellularly, properly discontinuously and cocompactly on a CAT(0) cube complex and its quotient is weakly special, then the above question is answered affirmatively.
We simplify the construction of projection complexes due to Bestvina-Bromberg-Fujiwara. To do so, we introduce a sharper version of the Behrstock inequality, and show that it can always be enforced. Furthermore, we use the new setup to prove acylindr icity results for the action on the projection complexes. We also treat quasi-trees of metric spaces associated to projection complexes, and prove an acylindricity criterion in that context as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا