ﻻ يوجد ملخص باللغة العربية
Shape dynamics is a classical theory of gravity which agrees with general relativity in many important aspects, but which possesses different gauge symmetries and can present some fundamental global differences with respect to Einstein spacetimes. Here, we present a general procedure for (locally) mapping stationary, axisymmetric general relativity solutions onto their shape dynamic counterparts. We focus in particular on the rotating black hole solution for shape dynamics and show that many of the properties of the spherically symmetric solution are preserved in the extension to the axisymmetric case: it is also free of physical singularities, it does not form a space-time at the horizon, and it possesses an inversion symmetry about the horizon which leads to us to interpret the solution as a wormhole.
Even though black hole scalarization is extensively studied recently, little has been done in the direction of understanding the dynamics of this process, especially in the rapidly rotating regime. In the present paper, we focus exactly on this probl
The recent opening of gravitational wave astronomy has shifted the debate about black hole mimickers from a purely theoretical arena to a phenomenological one. In this respect, missing a definitive quantum gravity theory, the possibility to have simp
We study the shadow of a rotating squashed Kaluza-Klein (KK) black hole and the shadow is found to possess distinct properties from those of usual rotating black holes. It is shown that the shadow for a rotating squashed KK black hole is heavily infl
We analyze rigidly rotating Nambu--Goto strings in the Kerr spacetime, particularly focusing on the strings sticking in the horizon. From the regularity on the horizon, we find the condition for sticking in the horizon, which is consistent with the s
In this article, we explore the geodesics motion of neutral test particles and the process of energy extraction from a regular rotating Hayward black hole. We analyse the effect of spin, as well as deviation parameter g, on ergoregion, event horizon