ﻻ يوجد ملخص باللغة العربية
The spectrum of the quantum Ising chain can be found by expressing the spins in terms of free fermions. An analogous transformation exists for clock chains with $Z_n$ symmetry, but is of less use because the resulting parafermionic operators remain interacting. Nonetheless, Baxter showed that a certain non-hermitian (but PT-symmetric) clock Hamiltonian is free, in the sense that the entire spectrum is found in terms of independent energy levels, with the striking feature that there are $n$ possibilities for occupying each level. Here I show this directly explicitly finding shift operators obeying a $Z_n$ generalization of the Clifford algebra. I also find higher Hamiltonians that commute with Baxters and prove their spectrum comes from the same set of energy levels. This thus provides an explicit notion of a free parafermion. A byproduct is an elegant method for the solution of the Ising/Kitaev chain with spatially varying couplings.
We study charge transport and fluctuations of the (3+1)-dimensional massive free Dirac theory. In particular, we focus on the steady state that emerges following a local quench whereby two independently thermalized halves of the system are connected
Free or integrable theories are usually considered to be too constrained to thermalize. For example, the retarded two-point function of a free field, even in a thermal state, does not decay to zero at long times. On the other hand, the magnetic susce
Results are given for the ground state energy and excitation spectrum of a simple $N$-state $Z_N$ spin chain described by free parafermions. The model is non-Hermitian for $N ge 3$ with a real ground state energy and a complex excitation spectrum. Al
We consider the calculation of ground-state expectation values for the non-Hermitian Z(N) spin chain described by free parafermions. For N=2 the model reduces to the quantum Ising chain in a transverse field with open boundary conditions. Use is made
We show that holomorphic Parafermions exist in the eight vertex model. This is done by extending the definition from the six vertex model to the eight vertex model utilizing a parameter redefinition. These Parafermions exist on the critical plane and