ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent advances on information transmission and storage assisted by noise

129   0   0.0 ( 0 )
 نشر من قبل Pablo Fierens
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay between nonlinear dynamic systems and noise has proved to be of great relevance in several application areas. In this presentation, we focus on the areas of information transmission and storage. We review some recent results on information transmission through nonlinear channels assisted by noise. We also present recent proposals of memory devices in which noise plays an essential role. Finally, we discuss new results on the influence of noise in memristors.



قيم البحث

اقرأ أيضاً

In this paper we extend our investigations on noise-assisted storage devices through the experimental study of a loop composed of a single Schmitt trigger and an element that introduces a finite delay. We show that such a system allows the storage of several bits and does so more efficiently for an intermediate range of noise intensities. Finally, we study the probability of erroneous information retrieval as a function of elapsed time and show a way for predicting device performance independently of the number of stored bits.
290 - H. M. Christen , G. Eres 2008
Pulsed-laser deposition (PLD) is one of the most promising techniques for the formation of complex-oxide heterostructures, superlattices, and well-controlled interfaces. The first part of this paper presents a review of several useful modifications o f the process, including methods inspired by combinatorial approaches. We then discuss detailed growth kinetics results, which illustrate that true layer-by-layer (LBL) growth can only be approached, but not fully met, even though many characterization techniques reveal interfaces with unexpected sharpness. Time-resolved surface x-ray diffraction measurements show that crystallization and the majority of interlayer mass transport occur on time scales that are comparable to those of the plume/substrate interaction, providing direct experimental evidence that a growth regime exists in which non-thermal processes dominate PLD. This understanding shows how kinetic growth manipulation can bring PLD closer to ideal LBL than any other growth method available today.
The deluge of digital information in our daily life -- from user-generated content, such as microblogs and scientific papers, to online business, such as viral marketing and advertising -- offers unprecedented opportunities to explore and exploit the trajectories and structures of the evolution of information cascades. Abundant research efforts, both academic and industrial, have aimed to reach a better understanding of the mechanisms driving the spread of information and quantifying the outcome of information diffusion. This article presents a comprehensive review and categorization of information popularity prediction methods, from feature engineering and stochastic processes, through graph representation, to deep learning-based approaches. Specifically, we first formally define different types of information cascades and summarize the perspectives of existing studies. We then present a taxonomy that categorizes existing works into the aforementioned three main groups as well as the main subclasses in each group, and we systematically review cutting-edge research work. Finally, we summarize the pros and cons of existing research efforts and outline the open challenges and opportunities in this field.
82 - E. Erdal , L. Arazi , A. Tesi 2017
We report on recent advances in the operation of bubble-assisted Liquid Hole Multipliers (LHM). By confining a vapor bubble under or adjacent to a perforated electrode immersed in liquid xenon, we could record both radiation-induced ionization electr ons and primary scintillation photons in the noble liquid. Four types of LHM electrodes were investigated: a THGEM, standard double-conical GEM, 50 $mu$m-thick single-conical GEM (SC-GEM) and 125 $mu$m-thick SC-GEM - all coated with CsI photocathodes. The 125 $mu$m-thick SC-GEM provided the highest electroluminescence (EL) yields, up to ~400 photons per electron over 4$pi$ with an RMS pulse-height resolution reaching 5.5% for events comprising ~7000 primary electrons. Applying a high transfer field across the bubble, the EL yield was further increased by a factor of ~5. The feasibility of a vertical-mode LHM, with the bubble confined between two vertical electrodes, and the operation of a two-stage LHM configuration were demonstrated for the first time. We combine electrostatic simulations with observed signals to draw conclusions regarding the location of the liquid-gas interface and suggest an explanation for the observed differences in EL yield between the investigated electrodes.
We extend results by Stotland and Di Ventra on the phenomenon of resistive switching aided by noise. We further the analysis of the mechanism underlying the beneficial role of noise and study the EPIR (Electrical Pulse Induced Resistance) ratio depen dence with noise power. In the case of internal noise we find an optimal range where the EPIR ratio is both maximized and independent of the preceding resistive state. However, when external noise is considered no beneficial effect is observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا