ترغب بنشر مسار تعليمي؟ اضغط هنا

Balanced Allocations: A Simple Proof for the Heavily Loaded Case

50   0   0.0 ( 0 )
 نشر من قبل Udi Wieder
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a relatively simple proof that the expected gap between the maximum load and the average load in the two choice process is bounded by $(1+o(1))log log n$, irrespective of the number of balls thrown. The theorem was first proven by Berenbrink et al. Their proof uses heavy machinery from Markov-Chain theory and some of the calculations are done using computers. In this manuscript we provide a significantly simpler proof that is not aided by computers and is self contained. The simplification comes at a cost of weaker bounds on the low order terms and a weaker tail bound for the probability of deviating from the expectation.

قيم البحث

اقرأ أيضاً

Transportation networks frequently employ hub-and-spoke network architectures to route flows between many origin and destination pairs. Hub facilities work as switching points for flows in large networks. In this study, we deal with a problem, called the single allocation hub-and-spoke network design problem. In the problem, the goal is to allocate each non-hub node to exactly one of given hub nodes so as to minimize the total transportation cost. The problem is essentially equivalent to another combinatorial optimization problem, called the metric labeling problem. The metric labeling problem was first introduced by Kleinberg and Tardos in 2002, motivated by application to segmentation problems in computer vision and related areas. In this study, we deal with the case where the set of hubs forms a star, which arises especially in telecommunication networks. We propose a polynomial-time randomized approximation algorithm for the problem, whose approximation ratio is less than 5.281. Our algorithms solve a linear relaxation problem and apply dependent rounding procedures.
The total influence of a function is a central notion in analysis of Boolean functions, and characterizing functions that have small total influence is one of the most fundamental questions associated with it. The KKL theorem and the Friedgut junta t heorem give a strong characterization of such functions whenever the bound on the total influence is $o(log n)$. However, both results become useless when the total influence of the function is $omega(log n)$. The only case in which this logarithmic barrier has been broken for an interesting class of functions was proved by Bourgain and Kalai, who focused on functions that are symmetric under large enough subgroups of $S_n$. In this paper, we build and improve on the techniques of the Bourgain-Kalai paper and establish new concentration results on the Fourier spectrum of Boolean functions with small total influence. Our results include: 1. A quantitative improvement of the Bourgain--Kalai result regarding the total influence of functions that are transitively symmetric. 2. A slightly weaker version of the Fourier--Entropy Conjecture of Friedgut and Kalai. This weaker version implies in particular that the Fourier spectrum of a constant variance, Boolean function $f$ is concentrated on $2^{O(I[f]log I[f])}$ characters, improving an earlier result of Friedgut. Removing the $log I[f]$ factor would essentially resolve the Fourier--Entropy Conjecture, as well as settle a conjecture of Mansour regarding the Fourier spectrum of polynomial size DNF formulas. Our concentration result has new implications in learning theory: it implies that the class of functions whose total influence is at most $K$ is agnostically learnable in time $2^{O(Klog K)}$, using membership queries.
293 - Hui-Ling Gu 2007
In this short paper, we will give a simple and transcendental proof for Moks theorem of the generalized Frankel conjecture. This work is based on the maximum principle in cite{BS2} proposed by Brendle and Schoen.
Threshold graphs are a class of graphs that have many equivalent definitions and have applications in integer programming and set packing problems. A graph is said to have a threshold cover of size $k$ if its edges can be covered using $k$ threshold graphs. Chvatal and Hammer, in 1977, defined the threshold dimension $mathrm{th}(G)$ of a graph $G$ to be the least integer $k$ such that $G$ has a threshold cover of size $k$ and observed that $mathrm{th}(G)geqchi(G^*)$, where $G^*$ is a suitably constructed auxiliary graph. Raschle and Simon~[Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing, STOC 95, pages 650--661, 1995] proved that $mathrm{th}(G)=chi(G^*)$ whenever $G^*$ is bipartite. We show how the lexicographic method of Hell and Huang can be used to obtain a completely new and, we believe, simpler proof for this result. For the case when $G$ is a split graph, our method yields a proof that is much shorter than the ones known in the literature.
How might one reduce a graph? That is, generate a smaller graph that preserves the global structure at the expense of discarding local details? There has been extensive work on both graph sparsification (removing edges) and graph coarsening (merging nodes, often by edge contraction); however, these operations are currently treated separately. Interestingly, for a planar graph, edge deletion corresponds to edge contraction in its planar dual (and more generally, for a graphical matroid and its dual). Moreover, with respect to the dynamics induced by the graph Laplacian (e.g., diffusion), deletion and contraction are physical manifestations of two reciprocal limits: edge weights of $0$ and $infty$, respectively. In this work, we provide a unifying framework that captures both of these operations, allowing one to simultaneously sparsify and coarsen a graph while preserving its large-scale structure. The limit of infinite edge weight is rarely considered, as many classical notions of graph similarity diverge. However, its algebraic, geometric, and physical interpretations are reflected in the Laplacian pseudoinverse $mathbf{mathit{L}}^{dagger}$, which remains finite in this limit. Motivated by this insight, we provide a probabilistic algorithm that reduces graphs while preserving $mathbf{mathit{L}}^{dagger}$, using an unbiased procedure that minimizes its variance. We compare our algorithm with several existing sparsification and coarsening algorithms using real-world datasets, and demonstrate that it more accurately preserves the large-scale structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا