ترغب بنشر مسار تعليمي؟ اضغط هنا

The Euler anomaly and scale factors in Liouville/Toda CFTs

46   0   0.0 ( 0 )
 نشر من قبل Aswin Balasubramanian
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The role played by the Euler anomaly in the dictionary relating sphere partition functions of four dimensional theories of class $mathcal{S}$ and two dimensional nonrational CFTs is clarified. On the two dimensional side, this involves a careful treatment of scale factors in Liouville/Toda correlators. Using ideas from tinkertoy constructions for Gaiotto duality, a framework is proposed for evaluating these scale factors. The representation theory of Weyl groups plays a critical role in this framework.

قيم البحث

اقرأ أيضاً

110 - V.de Alfaro 2008
General properties of a class of two-dimensional dilaton gravity (DG) theories with multi-exponential potentials are studied and a subclass of these theories, in which the equations of motion reduce to Toda and Liouville equations, is treated in deta il. A combination of parameters of the equations should satisfy a certain constraint that is identified and solved for the general multi-exponential model. From the constraint it follows that in DG theories the integrable Toda equations, generally, cannot appear without accompanying Liouville equations. We also show how the wave-like solutions of the general Toda-Liouville systems can be simply derived. In the dilaton gravity theory, these solutions describe nonlinear waves coupled to gravity as well as static states and cosmologies. A special attention is paid to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible, with the aim to gain a better understanding of realistic theories reduced to dimensions 1+1 and 1+0 or 0+1.
We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurati ons of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an $ell-$loop integral is a 2nd-order differential equation whose right-hand side is an $(ell-1)-$loop integral. We show several examples, in particular the four-dimensional scalar double box.
102 - Francois Hamel 2017
This paper is concerned with qualitative properties of bounded steady flows of an ideal incompressible fluid with no stagnation point in the two-dimensional plane R^2. We show that any such flow is a shear flow, that is, it is parallel to some consta nt vector. The proof of this Liouville-type result is firstly based on the study of the geometric properties of the level curves of the stream function and secondly on the derivation of some estimates on the at most logarithmic growth of the argument of the flow. These estimates lead to the conclusion that the streamlines of the flow are all parallel lines.
The AGT motivated relation between the tensor product of the N = 1 super-Liouville field theory with the imaginary free fermion (SL) and a certain projected tensor product of the real and the imaginary Liouville field theories (LL) is analyzed. Using conformal field theory techniques we give a complete proof of the equivalence in the NS sector. It is shown that the SL-LL correspondence is based on the equivalence of chiral objects including suitably chosen chiral structure constants of all the three Liouville theories involved.
153 - Andrea Manenti 2019
We study some aspects of conformal field theories at finite temperature in momentum space. We provide a formula for the Fourier transform of a thermal conformal block and study its analytic properties. In particular we show that the Fourier transform vanishes when the conformal dimension and spin are those of a double twist operator $Delta = 2Delta_phi + ell + 2n$. By analytically continuing to Lorentzian signature we show that the spectral density at high spatial momenta has support on the spectrum condition $|omega| > |k|$. This leads to a series of sum rules. Finally, we explicitly match the thermal block expansion with the momentum space Greens function at finite temperature in several examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا