ترغب بنشر مسار تعليمي؟ اضغط هنا

The superluminous supernova PS1-11ap: bridging the gap between low and high redshift

65   0   0.0 ( 0 )
 نشر من قبل Matt McCrum
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical photometric and spectroscopic coverage of the superluminous supernova (SLSN) PS1-11ap, discovered with the Pan-STARRS1 Medium Deep Survey at z = 0.524. This intrinsically blue transient rose slowly to reach a peak magnitude of M_u = -21.4 mag and bolometric luminosity of 8 x 10^43 ergs^-1 before settling onto a relatively shallow gradient of decline. The observed decline is significantly slower than those of the superluminous type Ic SNe which have been the focus of much recent attention. Spectroscopic similarities with the lower redshift SN2007bi and a decline rate similar to 56Co decay timescale initially indicated that this transient could be a candidate for a pair instability supernova (PISN) explosion. Overall the transient appears quite similar to SN2007bi and the lower redshift object PTF12dam. The extensive data set, from 30 days before peak to 230 days after, allows a detailed and quantitative comparison with published models of PISN explosions. We find that the PS1-11ap data do not match these model explosion parameters well, supporting the recent claim that these SNe are not pair instability explosions. We show that PS1-11ap has many features in common with the faster declining superluminous Ic supernovae and the lightcurve evolution can also be quantitatively explained by the magnetar spin down model. At a redshift of z = 0.524 the observer frame optical coverage provides comprehensive restframe UV data and allows us to compare it with the superluminous SNe recently found at high redshifts between z = 2-4. While these high-z explosions are still plausible PISN candidates, they match the photometric evolution of PS1-11ap and hence could be counterparts to this lower redshift transient.

قيم البحث

اقرأ أيضاً

We present the Pan-STARRS1 discovery of PS1-10afx, a unique hydrogen-deficient superluminous supernova (SLSN) at z=1.388. The light curve peaked at z_P1=21.7 mag, making PS1-10afx comparable to the most luminous known SNe, with M_u = -22.3 mag. Our e xtensive optical and NIR observations indicate that the bolometric light curve of PS1-10afx rose on the unusually fast timescale of ~12 d to the extraordinary peak luminosity of 4.1e44 erg/s (M_bol = -22.8 mag) and subsequently faded rapidly. Equally important, the SED is unusually red for a SLSN, with a color temperature of 6800 K near maximum light, in contrast to previous H-poor SLSNe, which are bright in the UV. The spectra more closely resemble those of a normal SN Ic than any known SLSN, with a photospheric velocity of 11,000 km/s and evidence for line blanketing in the rest-frame UV. Despite the fast rise, these parameters imply a very large emitting radius (>5e15 cm). We demonstrate that no existing theoretical model can satisfactorily explain this combination of properties: (i) a nickel-powered light curve cannot match the combination of high peak luminosity with the fast timescale; (ii) models powered by the spindown energy of a rapidly-rotating magnetar predict significantly hotter and faster ejecta; and (iii) models invoking shock breakout through a dense circumstellar medium cannot explain the observed spectra or color evolution. The host galaxy is well detected in pre-explosion imaging with a luminosity near L*, a star formation rate of 15 M_sun/yr, and is fairly massive (2e10 M_sun), with a stellar population age of 1e8 yr, also in contrast to the dwarf hosts of known H-poor SLSNe. PS1-10afx is distinct from known examples of SLSNe in its spectra, colors, light-curve shape, and host galaxy properties, suggesting that it resulted from a different channel than other hydrogen-poor SLSNe.
We present observations of four rapidly rising (t_{rise}~10d) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M_{peak}~-20) - one discovered and followed by the Palomar Transient Factory (PTF) and three by t he Supernova Legacy Survey (SNLS). The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as a Type II SN due to broad Halpha emission, but an unusual absorption feature, which can be interpreted as either high velocity Halpha (though deeper than in previously known cases) or Si II (as seen in Type Ia SNe), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM) and magnetar spindown can not readily explain the observations. We consider the possibility that a Type 1.5 SN scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help better determine their nature.
At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with peak luminosities ($L_{rm iso} < 10^{48.5}~rm{erg,s}^{-1}$) substantially lower than the average of the more distant ones ($L_{rm iso} > 10^{49.5}~rm{erg,s}^{-1}$). The p roperties of several low-luminosity (low-$L$) GRBs indicate that they can be due to shock break-out, as opposed to the emission from ultrarelativistic jets. Owing to this, it is highly debated how both populations are connected, and whether there is a continuum between them. The burst at redshift $z=0.283$ from 2012 April 22 is one of the very few examples of intermediate-$L$ GRBs with a $gamma$-ray luminosity of $Lsim10^{48.9}~rm{erg,s}^{-1}$ that have been detected up to now. Together with the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low- and high-$L$ GRBs and the GRB-SN connection. We carried out a spectroscopy campaign using medium- and low-resolution spectrographs at 6--10-m class telescopes, covering the time span of 37.3 days, and a multi-wavelength imaging campaign from radio to X-ray energies over a duration of $sim270$ days. Furthermore, we used a tuneable filter centred at H$alpha$ to map star formation in the host galaxy and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and incorporate spectral-energy-distribution fitting techniques to extract the properties of the host galaxy. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed the blast-wave to expand with an initial Lorentz factor of $Gamma_0sim60$, low for a high-$L$ GRB, and that the afterglow had an exceptional low peak luminosity-density of $lesssim2times10^{30}~rm{erg,s}^{-1},rm{Hz}^{-1}$ in the sub-mm. [Abridged]
Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively hi gh stellar mass and correspondingly high metallicity. In this paper, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12 + log (O/H) = 8.8-9.1). Additionally we measure a small H-alpha equivalent width (EW) at the SN position of just 34 Angs, which is one of the lowest EWs measured at any SLSN or Gamma-Ray Burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.
We analyze the rise and fall times of type Ia supernova (SN Ia) light curves discovered by the SDSS-II Supernova Survey. From a set of 391 light curves k-corrected to the rest frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single stretch correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well-observed in both rise and fall portions of the light curves and develop a 2-stretch fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 +/- 0.17 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. We find that slow declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single-peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, tr-tf <= 2 days and tr-tf>2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا