ﻻ يوجد ملخص باللغة العربية
Two-photon excited fluorescence (TPEF) is a standard technique in modern microscopy but still affected by photo-damage of the probe. It was proposed that TPEF can be enhanced by using entangled photons, but has proven to be challenging. Recently it was shown that some features of entangled photons can be mimicked with thermal light, which finds application in ghost imaging, sub-wavelength lithography and metrology. Here, we utilize true thermal light from a super-luminescence diode to demonstrate enhanced TPEF compared to coherent light using two common fluorophores and luminescent quantum dots. We find that the two-photon absorption rate is directly proportional to the measured degree of second-order coherence, as predicted by theory. Our results show that photon bunching can be exploited in two-photon microscopy with the photon statistic providing a new degree of freedom.
We investigate the prospects of using two-mode intensity squeezed twin-beams, generated in Rb vapor, to improve the sensitivity of spectroscopic measurements by engaging two-photon Raman transitions. As a proof of principle demonstration, we demonstr
It is well known that energy-time entanglement can enhance two photon absorption (TPA) by simultaneously optimizing the two photon resonance and the coincidence rate of photons at the absorber. However, the precise relation between entanglement and t
Quantum dots in cavities have been shown to be very bright sources of indistinguishable single photons. Yet the quantum interference between two bright quantum dot sources, a critical step for photon based quantum computation, has never been investig
Entangled two-photon absorption spectroscopy (TPA) has been widely recognized as a powerful tool for revealing relevant information about the structure of complex molecular systems. However, to date, the experimental implementation of this technique
We study in this paper the efficiency of different two-photon states of light to induce the simultaneous excitation of two atoms of different kinds when the sum of the energies of the two photons matches the sum of the energies of the two atomic tran