ﻻ يوجد ملخص باللغة العربية
We present an intelligent interactive nightstand mounted on a mobile robot, to aid the elderly in their homes using physical, tactile and visual percepts. We show the integration of three different sensing modalities for controlling the navigation of a robot mounted nightstand within the constrained environment of a general purpose living room housing a single aging individual in need of assistance and monitoring. A camera mounted on the ceiling of the room, gives a top-down view of the obstacles, the person and the nightstand. Pressure sensors mounted beneath the bed-stand of the individual provide physical perception of the persons state. A proximity IR sensor on the nightstand acts as a tactile interface along with a Wii Nunchuck (Nintendo) to control mundane operations on the nightstand. Intelligence from these three modalities are combined to enable path planning for the nightstand to approach the individual. With growing emphasis on assistive technology for the aging individuals who are increasingly electing to stay in their homes, we show how ubiquitous intelligence can be brought inside homes to help monitor and provide care to an individual. Our approach goes one step towards achieving pervasive intelligence by seamlessly integrating different sensors embedded in the fabric of the environment.
In this paper, our focus is on certain applications for mobile robotic networks, where reconfiguration is driven by factors intrinsic to the network rather than changes in the external environment. In particular, we study a version of the coverage pr
In this work, we report on the integrated sensorimotor control of the Pisa/IIT SoftHand, an anthropomorphic soft robot hand designed around the principle of adaptive synergies, with the BRL tactile fingertip (TacTip), a soft biomimetic optical tactil
This paper presents the concept of an In situ Fabricator, a mobile robot intended for on-site manufacturing, assembly and digital fabrication. We present an overview of a prototype system, its capabilities, and highlight the importance of high-perfor
Koopman operator theory has served as the basis to extract dynamics for nonlinear system modeling and control across settings, including non-holonomic mobile robot control. There is a growing interest in research to derive robustness (and/or safety)
A key component of many robotics model-based planning and control algorithms is physics predictions, that is, forecasting a sequence of states given an initial state and a sequence of controls. This process is slow and a major computational bottlenec